首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用AZ31镁合金铸锭在实验室立式等径双辊铸轧机上进行铸轧试验;对铸轧带坯直接进行冷轧和冷轧后退火处理.研究了AZ31镁合金薄带立式双辊铸轧工艺及铸轧带坯进行冷轧、轧后退火过程的组织演变行为.采用合理的工艺参数,成功铸轧出镁合金薄带,同时由于双辊铸轧快速冷却和压力下凝固成形技术特点,改善了镁合金的凝固组织.对铸轧镁合金带坯直接进行冷轧,最大变形量可以达到40.7%.经过冷轧后的镁合金板材,在350℃下退火30~60 min,可以获得平均晶粒直径为9~10μm的等轴晶细晶组织.  相似文献   

2.
双辊铸轧工艺是一种短流程、高效、低能耗的近终成形工艺。但较低的铸轧速度成为制约提高铸轧工艺生产效率的关键因素。基于此,使用换热效率更高的铜辊套成为提高铸轧工艺生产效率的研究热点。本文通过数值模拟与实验,探究了铜辊套与钢辊套分别能够达到的最快铸轧速度,量化铜辊套对铸轧速度的提升效果。模拟结果与实验结果均表明,基于本实验平台,稳定铸轧时,铜辊套的最快铸轧速度可达到10 m/min,是钢辊套的2.5倍。最后建立了双辊铸轧稳态的热阻模型,通过计算得到,在相同条件下,铜辊套的热流量是钢辊套的4~8倍。上述研究结果能够为工业化铸轧机提速改造提供理论依据和指导。  相似文献   

3.
针对铸轧辊套在复杂工况下承受较大的耦合应力时容易产生疲劳磨损和表面开裂问题,应用AN-SYS软件建立了铸轧辊辊套二维模型,得到了辊套的温度分布规律;通过间接法将热分析结果导入结构模型中,得到了辊套在热应力、过盈装配应力和铸轧力共同作用下的应力分布规律,以及不同的铸轧温度和辊套厚度对辊套应力值大小的影响。结果表明:辊套厚度大于25mm和温度为500℃的工况对延长辊套寿命有利。  相似文献   

4.
在连续铸轧中,金属液经铸嘴装置连续不断地注入2个相向旋转、内部通水冷却的铸轧辊的辊缝中间,金属液在辊缝中冷却、凝固结晶并经轧制成形.作者通过建立铸坯与铸轧辊辊套之间强温变耦合特性的界面接触热导模型及铸坯和铸轧辊辊套传热数学模型,对铸轧辊与铸坯的温度场进行了仿真,并分析了辊套的厚度、导热系数和表面粗糙度对辊套温度分布的影响.通过仿真分析发现辊套外表面温度在铸轧区变化剧烈,辊套进入铸轧区入口处温度开始急剧上升,但最高温度并不在出口处,而是在轧制区靠近出口处.辊套离开铸轧区后温度开始下降,进入入口处时温度降至最低;界面导热能力随辊套表面粗糙度减小、辊套材料的导热系数增大、辊套厚度减小而增大.  相似文献   

5.
双辊铸轧中辊套传热的集肤效应及最大铸轧速度   总被引:1,自引:0,他引:1  
基于热平衡原理,用大型通用有限元分析软件ANSYS建立了双辊连续铸轧中辊套二维稳态传热计算模型;分析在不同转速、材料和内冷等工况下旋转辊套的传热规律,揭示了辊套传热的"集肤效应"和铸轧不同板坯厚度时能够达到的最大铸轧速度.仿真研究表明:随着铸轧速度的提高,"集肤效应"越明显;改变内冷条件,如与内部冷却水的换热系数从5000W/(m2·K)增至25000W/(m2·K),铸轧速度提高不明显;而应用导热性能好的铜辊套,由于其热穿透能力提高,铸轧速度大大提高.  相似文献   

6.
采用自主设计的立式双辊铸轧机生产3~4 mm厚度的镁合金铸轧坯,观察并分析其微观组织,研究对铸轧坯采用不同温度轧制以制备镁合金薄板技术,并对薄板组织性能进行分析。结果表明:铸轧-温轧制(T=280℃)法制备的镁合金薄板表面质量与微观组织表现良好,力学性能出色,其最大抗拉强度达260 MPa,延伸率达11.5%;其一次拉深极限系数m e=0.77,能够拉深出较为规范的杯体,具有一定的成形性。说明铸轧-温轧制法是制备镁合金薄板的一种较好途径。  相似文献   

7.
通过双辊铸轧铸嘴型腔三维熔体流动与传热数学模型计算了不同铸轧条件下铸嘴型腔熔体各个分量出口速度、温度分布以及流动阻力损失.结果表明:在超薄快速铸轧时,熔体横向速度uy、高向速度uz远小于流向速度ux.同常规铸轧相比,超薄快速铸轧铸嘴型腔流动阻力系数小且沿型腔长度增长缓慢.图2,参14.  相似文献   

8.
采用自主设计的立式双辊铸轧机生产3~4 mm厚度的镁合金铸轧坯,观察并分析其微观组织,研究对铸轧坯采用不同温度轧制以制备镁合金薄板技术,并对薄板组织性能进行分析.结果表明:铸轧-温轧制(T=280℃)法制备的镁合金薄板表面质量与微观组织表现良好,力学性能出色,其最大抗拉强度达260 MPa,延伸率达11.5%;其一次拉深极限系数me=0.77,能够拉深出较为规范的杯体,具有一定的成形性.说明铸轧-温轧制法是制备镁合金薄板的一种较好途径.  相似文献   

9.
双辊铸轧薄带过程中铸速对熔池内温度场的影响   总被引:1,自引:0,他引:1  
采用三维流热耦合有限元分析对双辊铸轧不锈钢过程进行模拟,利用反向方法处理铸辊与熔池之间的换热边界条件,研究发现,随着铸轧速度的提高,铸带与铸辊之间的热传导系数增大,凝固终了点位置向铸机出口移动,铸带的表面和中心温度都有所升高,熔池表面温度略有增加.在水口尺寸一定的情况下,铸轧速度过小,铸带横向温差较大.铸轧速度是调节熔池液面高度和轧制力的有效手段.  相似文献   

10.
双辊铸轧是一种高效制备金属薄板带坯的先进技术.在铸轧过程中,熔池内的液态金属受到强冷、熔体对流的影响;随着铸轧速度的提高,熔池深度向轧制方向延伸,熔池头部的金属熔体受到轧制压力的作用.作者采用双辊铸轧工艺,在实验室小型工业铸轧机上以不同的铸轧速度生产出2 mm和3 mm纯铝薄板带坯,通过对铝带坯凝固区的显微组织观察及熔池温度场特性的分析,对铸轧速度对液态金属的凝固行为的影响进行了研究.图2,参10.  相似文献   

11.
基于立式薄带双辊铸轧工艺的特点,采用有限元法求解镁合金薄带双辊铸轧过程的三维宏观传输方程,并应用ANSYS软件的智能网格划分技术,实现了对铸轧过程中熔池内部温度场、速度场及凝固过程的耦合模拟.分析了铸轧速度及浇注温度等主要工艺参数对熔池内流场、温度场和凝固终了点的影响规律.研究结果表明,随着浇注温度和铸轧速度的增加,熔池出口处的温度升高,凝固终了点向熔池出口处移动.通过对模拟结果的讨论,给出了适合镁合金薄带铸轧过程的工艺参数:浇注温度为640~660℃,铸轧速度为20~30 m/min.  相似文献   

12.
为了更好地利用铸轧薄带表面溶质富集层,对高磷钢薄带表面磷富集层的成因进行了初步的分析和研究.实验结果表明,通过控制工艺参数,磷含量较高的铸轧薄带表面附近将有一个磷富集层出现,但在相同条件下磷含量较低的铸轧薄带中磷的分布基本均匀.通过理论分析得出,铸轧力驱使枝晶间富磷的液相回流到薄带表面附近,导致了磷富集层在铸轧薄带中的产生;表面磷富集层形成的前提条件是当源于铸轧辊表面的两凝固层相遇时Kiss点位于辊缝之上,且其下方附近区域横截面上的温度均处于液固线之间.  相似文献   

13.
满足铝合金超常铸轧工艺所需综合技术性能要求的辊套材料,是采用双辊连续铸轧方法实现铝合金超常铸轧的重要技术保障.辊套材料良好的切削加工性能是获得高性能铸轧辊的基础.对新型铸轧辊套材料的切削加工性能进行了综合分析;从切削力和已加工表面粗糙度两方面,对新型铸轧辊套材料的切削加工性能进行了实验研究.结果表明,新型铝合金超常铸轧辊套材料具有优良的切削加工性能;在相同的加工条件下,切削新型辊套材料时的切削力明显小于切削现有典型合金钢辊套材料,磨削新型辊套材料时的表面粗糙度值与磨削合金钢辊套材料无明显差别.图4,表4,参12.  相似文献   

14.
采用ANSYS有限元软件对双辊铸轧低碳钢过程进行模拟。研究发现,铸轧速度对铸带与铸辊之间的热传导系数有一定影响,对凝固终了点的位置也有很大影响。当铸轧速度提高,带材表面温度和中心温度也提高,而且带材凝固点有所下移,熔池表面温度也有所增加。铸轧速度是保证铸带质量和实现稳定铸轧的先决条件。  相似文献   

15.
基于ANSYS软件建立310 mm×360 mm(长×宽)断面大方坯连铸过程二维凝固传热数学模型,通过窄面射钉试验及铸坯表面测温对模型的准确性进行验证,模拟不同碳质量分数高碳耐磨球钢大方坯宽面和窄面凝固坯壳的生长规律,将计算结果应用于轻压下过程中并进行现场试验。研究结果表明:模型能精确地获得不同工况下任意位置铸坯凝固坯壳的厚度分布、凝固终点位置及中心固相率。不同碳质量分数的高碳耐磨球钢具有相同的凝固规律:结晶器弯月面至二冷区出口,铸坯柱状晶区的凝固坯壳厚度与凝固时间的平方根呈线性关系,符合平方根定律,平方根定律的修正项与过热度有关;二冷区出口至凝固终点,相应铸坯等轴晶区凝固坯壳厚度与凝固时间的平方根呈非线性关系;根据凝固传热模型计算的高碳耐磨球钢BU铸坯中心固相率分布,结合轻压下合适的压下区间要求,拉速从0.43 m/min增加到0.52 m/min,轻压下可压区间增加,铸坯的中心碳偏析明显减少。  相似文献   

16.
采用双辊连续铸轧方法,实现铝薄带的超常铸轧,是一种高效、短流程、低能耗的近净和近终形成型技术.在铝薄带超常铸轧过程中,铸轧辊套温度场周期性的变化引起铸轧辊套内热应力场的周期性变化.根据铸轧辊套热应力数学模型,对铝薄带超常铸轧辊套热应力进行了仿真分析.结果表明,辊套外表面不仅热应力大,而且变化幅度大;辊套材料的导热能力、铸轧速度、辊套表面与冷却介质的换热系数对辊套热应力场有显著影响.图3,表1,参12.  相似文献   

17.
研制了适合铅合金板连续铸轧使用的复合型铸嘴.研究了铸轧过程中温度与轧制速度等工艺参数对轧制过程的影响,试验表明最佳铸轧温度范围为355~370℃,最佳轧制速度范围为1.1~1.2m/min.对连续铸轧法生产的铅合金板带与铸造+轧制法生产的铅合金板带进行对比测试.结果表明:二者的密度、电导率大小相当;晶粒尺寸大小相当,合金元素均成弥散分布;在力学性能方面,连续铸轧法生产的铅合金板带略低于铸造+轧制法生产的,这可能是由于合金元素Ca的缺少所致.用水平式双辊连续铸轧法成功轧制出基本满足商业使用要求的铅合金板带.  相似文献   

18.
通过实验方法和有限元分析研究AZ31(3%Al,1%Zn,质量分数)镁合金的温拉深成形。利用有限元分析研究工艺参数对盒形件拉深性能的影响,预测成形过程中缺陷的产生及扩展。通过模拟得出的成形极限图发现200℃和250℃下板材成形性能良好;通过对厚度进行测量发现200℃时的厚度分布更均匀,而拉深速度为18 mm/min时没有发生断裂缺陷;当拉深速度达到66 mm/min和180 mm/min时在凸模拐角处发生断裂;在不断升高温度条件下,AZ31板材的成形性能有显著提高;温度和速度对盒形件的拉深成形均有很大的影响。实验和数值模拟结果匹配,可以通过有限元分析来指导实验。  相似文献   

19.
CO2激光焊接快速凝固耐热铝合金AA8009   总被引:1,自引:0,他引:1  
采用3种不同的焊接速度(0.6, 1.5和2.4 m/min), 对板厚为1 mm的耐热铝合金AA8009进行CO2激光焊接. 研究结果表明: 在焊接冷却速度为102~103 ℃/s时, 焊缝中心凝固组织为亚共晶组织, 大量细小的第二相粒子弥散分布在细小近等轴的α-Al中;在熔化区边界存在大量粗大的针状相分布在粗大胞状枝晶α-Al中;提高焊接速度可改善焊接接头组织和性能, 当焊接速度为2.4 m/min时, 焊缝组织类似于基材组织;焊接接头断裂发生在熔化区边界.  相似文献   

20.
利用ANSYS有限元软件,对铸轧辊建立二维模型来模拟铸轧辊在镁合金铸轧过程中的温度场分布.通过分析不同冷却水温度及冷却水速下铸轧辊温度场的分布情况,得出在镁合金铸轧过程中,提高冷却水速可以降低铸轧辊的温度场,但随着冷却水速的提高,这种能力逐渐减弱;而冷却水温度对铸轧辊温度场影响不大.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号