首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
A large anion-selective channel has seven conductance levels   总被引:11,自引:0,他引:11  
M E Krouse  G T Schneider  P W Gage 《Nature》1986,319(6048):58-60
Ion channels have generally been found to have two predominant conductance levels thought to be associated with 'open' and 'closed' states, but intermediate (subconductance) states have also been reported. We have now found that a large conductance, anion-selective channel in pulmonary alveolar epithelial cells can adopt any of six open levels of conductance that are integer multiples of 60-70 pS. The channel is usually either fully open or fully closed. The frequencies of the different conductance levels are inconsistent with the notion that there are six independent channels. We suggest that the channel consists of six conducting pathways in parallel, 'co-channels', with a shared gating mechanism that can synchronously render all of them non-conducting. Other channels with lower maximum conductance may operate in a similar way but multiple conductance levels would not easily be detected because of a less favourable signal-to-noise ratio.  相似文献   

2.
Measurement of the quantum of thermal conductance   总被引:1,自引:0,他引:1  
Schwab K  Henriksen EA  Worlock JM  Roukes ML 《Nature》2000,404(6781):974-977
The physics of mesoscopic electronic systems has been explored for more than 15 years. Mesoscopic phenomena in transport processes occur when the wavelength or the coherence length of the carriers becomes comparable to, or larger than, the sample dimensions. One striking result in this domain is the quantization of electrical conduction, observed in a quasi-one-dimensional constriction formed between reservoirs of two-dimensional electron gas. The conductance of this system is determined by the number of participating quantum states or 'channels' within the constriction; in the ideal case, each spin-degenerate channel contributes a quantized unit of 2e(2)/h to the electrical conductance. It has been speculated that similar behaviour should be observable for thermal transport in mesoscopic phonon systems. But experiments attempted in this regime have so far yielded inconclusive results. Here we report the observation of a quantized limiting value for the thermal conductance, Gth, in suspended insulating nanostructures at very low temperatures. The behaviour we observe is consistent with predictions for phonon transport in a ballistic, one-dimensional channel: at low temperatures, Gth approaches a maximum value of g0 = pi2kB2T/3h, the universal quantum of thermal conductance.  相似文献   

3.
Decamethonium and hexamethonium block K+ channels of sarcoplasmic reticulum   总被引:5,自引:0,他引:5  
R Coronado  C Miller 《Nature》1980,288(5790):495-497
The sarcoplasmic reticulum membrane (SR) of skeletal muscle contains cation-selective channels which have been detected by isotope fluxes in fragmented SR vesicles, fluorimetric dyes and direct incorporation of SR vesicles to planar phospholipid bilayers. SR channels incorporated in bilayers have a single open-state conductance of 140 pS in 0.1 MK+ (refs 4,5). We have previously reported blockade of the SR channel by Cs+, a low-affinity blocker with a zero-voltage dissociation constant of 40 mM (ref. 6). We showed that increasing Cs+ concentrations reduced the open-channel conductance, increased the mean open time and conferred voltage dependence on the open-state conductance. Here we report on the blockade induced by the cholinergic drugs decamethonium and hexamethonium on the SR channel. Although blockade by hexamethonium is similar to that of Cs+, decamethonium blocks with a much higher affinity and induces flickering events which are probably due to the interaction of single drug molecules with the open state.  相似文献   

4.
H Brew  P T Gray  P Mobbs  D Attwell 《Nature》1986,324(6096):466-468
A major function of glial cells in the central nervous system is to buffer the extracellular potassium concentration, [K+]o. A local rise in [K+]o causes potassium ions to enter glial cells, which have membranes that are highly permeable to K+; potassium then leaves the glial cells at other locations where [K+]o has not risen. We report here the first study of the individual ion channels mediating potassium buffering by glial cells. The patch-clamp technique was employed to record single channel currents in Müller cells, the radial glia of the vertebrate retina. Those cells have 94% of their potassium conductance in an endfoot apposed to the vitreous humour, causing K+ released from active retinal neurones to be buffered preferentially to the vitreous. Recordings from patches of endfoot and cell body membrane show that a single type of inward-rectifying K+ channel mediates potassium buffering at both cell locations. The non-uniform density of K+ conductance is due to a non-uniform distribution of one type of K+ channel, rather than to the cell expressing high conductance channels at the endfoot and low conductance channels elsewhere on the cell.  相似文献   

5.
L W Haynes  A R Kay  K W Yau 《Nature》1986,321(6065):66-70
The plasma membrane of retinal rod outer segments contains a cyclic GMP-activated conductance which appears to be the light-sensitive conductance involved in phototransduction. Recently, it has been found that this conductance is partially blocked by Mg2+ and Ca2+ at physiological concentrations, thus possibly accounting for the absence of observable single-channel activity in excised membrane patches and for the unusually small apparent unit conductance deduced from noise measurements on intact cells. We now report that, as expected from this idea, single cGMP-activated channel activity can be detected from an excised rod membrane patch in the absence of divalent cations. The most prominent unitary current had a mean conductance of approximately 25 pS. Both individual channel openings (mean open time approximately 1 ms) and short bursts of openings (mean burst duration of about a few milliseconds) were observed. In addition, there were smaller events which probably represented other states of the conductance. The mean current increased with the third power of cGMP concentration, suggesting that there are at least three cGMP-binding sites on the channel molecule. With 0.2 mM Mg2+ in the cGMP-containing solution, a flickering block of the open channel was observed; the effect of Ca2+ was similar. The results resolve a puzzle about the light-sensitive conductance by demonstrating that it is an aqueous pore rather than a carrier.  相似文献   

6.
Vertebrate rod photoreceptors hyperpolarize when illuminated, due to the closing of cation-selective channels in the plasma membrane. The mechanism controlling the opening and closing of these channels is still unclear, however. Both 3',5'-cyclic GMP and Ca2+ ions have been proposed as intracellular messengers for coupling the light activation of the photopigment rhodopsin to channel activity and thus modulating light-sensitive conductance. We have now studied the effects of possible conductance modulators on excised 'inside-out' patches from the plasma membrane of the rod outer segment (ROS), and have found that cyclic GMP acting from the inner side of the membrane markedly increases the cationic conductance of such patches (EC50 30 microM cyclic GMP) in a reversible manner, while Ca2+ is ineffective. The cyclic GMP-induced conductance increase occurs in the absence of nucleoside triphosphates and, hence, is not mediated by protein phosphorylation, but seems rather to result from a direct action of cyclic GMP on the membrane. The effect of cyclic GMP is highly specific; cyclic AMP and 2',3'-cyclic GMP are completely ineffective when applied in millimolar concentrations. We were unable to recognize discrete current steps that might represent single-channel openings and closings modulated by cyclic GMP. Analysis of membrane current noise shows the elementary event to be 3 fA with 110 mM Na+ on both sides of the membrane at a membrane potential of -30 mV. If the initial event is assumed to be the closure of a single cyclic GMP-sensitive channel, this value corresponds to a single-channel conductance of 100 fS. It seems probable that the cyclic GMP-sensitive conductance is responsible for the generation of the rod photoresponse in vivo.  相似文献   

7.
L J Breckenridge  W Almers 《Nature》1987,328(6133):814-817
Exocytosis, or the fusion of cytoplasmic vesicles with the cell membrane, occurs in nearly all eukaryotic cells, but its mechanism is not understood. Morphological and electrophysiological studies have suggested that membrane fusion begins with the formation of a 'fusion pore', a narrow channel across the closely adjacent membranes of vesicle and cell that forms the first connection of the vesicle lumen with the cell exterior and later dilates to allow release of vesicle contents. We used the patch clamp technique to study exocytosis of single giant secretory vesicles in mast cells of beige mice. The first opening of the fusion pore was found to generate a brief current transient, whose size and direction indicated an initial pore conductance of about 230 pS and a lumen-positive vesicle membrane potential. In time-resolved a.c. admittance measurements, the pore conductance was found to increase to much larger values within milliseconds, as if the pore dilated soon after opening. We conclude that the earliest fusion event may be the formation of a structure similar to an ion channel. Its conductance is of the same order of magnitude as that of a single gap junction channel, the only other known channel that spans two membranes.  相似文献   

8.
Y Maruyama  O H Petersen  P Flanagan  G T Pearson 《Nature》1983,305(5931):228-232
Ca2+- and voltage-activated K+ channels are found in many electrically excitable cells and have an important role in regulating electrical activity. Recently, the large K+ channel has been found in the baso-lateral plasma membranes of salivary gland acinar cells, where it may be important in the regulation of salt transport. Using patch-clamp methods to record single-channel currents from excised fragments of baso-lateral acinar cell membranes in combination with current recordings from isolated single acinar cells and two- and three-cell clusters, we have now for the first time characterized the K+ channels quantitatively. In pig pancreatic acini there are 25-60 K+ channels per cell with a maximal single channel conductance of about 200 pS. We have quantified the relationship between internal ionized Ca2+ concentration [( Ca2+]i) membrane potential and open-state probability (p) of the K+ channel. By comparing curves obtained from excised patches relating membrane potential to p, at different levels of [Ca2+]i, with similar curves obtained from intact cells, [Ca2+]i in resting acinar cells was found to be between 10(-8) and 10(-7) M. In microelectrode experiments acetylcholine (ACh), gastrin-cholecystokinin (CCK) as well as bombesin peptides evoked Ca2+-dependent opening of the K+ conductance pathway, resulting in membrane hyperpolarization. The large K+ channel, which is under strict dual control by internal Ca2+ and voltage, may provide a crucial link between hormone-evoked increase in internal Ca2+ concentration and the resulting NaCl-rich fluid secretion.  相似文献   

9.
Since it was first suggested that a single molecule might function as an active electronic component, a number of techniques have been developed to measure the charge transport properties of single molecules. Although scanning tunnelling microscopy observations under high vacuum conditions can allow stable measurements of electron transport, most measurements of a single molecule bonded in a metal-molecule-metal junction exhibit relatively large variations in conductance. As a result, even simple predictions about how molecules behave in such junctions have still not been rigorously tested. For instance, it is well known that the tunnelling current passing through a molecule depends on its conformation; but although some experiments have verified this effect, a comprehensive mapping of how junction conductance changes with molecular conformation is not yet available. In the simple case of a biphenyl--a molecule with two phenyl rings linked by a single C-C bond--conductance is expected to change with the relative twist angle between the two rings, with the planar conformation having the highest conductance. Here we use amine link groups to form single-molecule junctions with more reproducible current-voltage characteristics. This allows us to extract average conductance values from thousands of individual measurements on a series of seven biphenyl molecules with different ring substitutions that alter the twist angle of the molecules. We find that the conductance for the series decreases with increasing twist angle, consistent with a cosine-squared relation predicted for transport through pi-conjugated biphenyl systems.  相似文献   

10.
G Nagel  T C Hwang  K L Nastiuk  A C Nairn  D C Gadsby 《Nature》1992,360(6399):81-84
Stimulation of beta-adrenoceptors in cardiac ventricular myocytes activates a strong chloride ion conductance as a result of phosphorylation by cyclic AMP-dependent protein kinase (PKA). This Cl- conductance, which is time- and voltage-independent, counters the tendency of the simultaneously enhanced Ca2+ channel current to prolong the ventricular action potential. Using inside-out giant patches excised from guinea-pig myocytes, we show here that phosphorylation by the PKA catalytic subunit plus Mg-ATP elicits discrete Cl- channel currents. In almost symmetrical Cl- solutions (approximately 150 mM), unitary current amplitude scales with membrane potential, and reverses sign near 0 mV, to yield a single channel conductance of approximately 12 pS. Opening of the phosphorylated channels requires hydrolysable nucleoside triphosphate, indicating that phosphorylation by PKA is necessary, but not sufficient, for channel activation. The properties of these PKA-regulated cardiac Cl- channels are very similar, if not identical, to those of the cystic fibrosis transmembrane conductance regulator (CFTR), the epithelial cell Cl- channel whose regulation is defective in patients with cystic fibrosis. The full cardiological impact of these Cl- channels and of their possible malfunction in patients with cystic fibrosis remains to be determined.  相似文献   

11.
J A Strong  A P Fox  R W Tsien  L K Kaczmarek 《Nature》1987,325(6106):714-717
The modulation of voltage-activated calcium currents by protein kinases provides excitable cells with a mechanism for regulating their electrical behaviour. At the single channel level, modulation of calcium current has, to date, been characterized only in cardiac muscle, where beta-adrenergic agonists, acting through cyclic AMP-dependent protein kinase, enhance the calcium current by increasing channel availability and opening. We now report that enhancement of calcium current in the peptidergic bag cell neurons of Aplysia by protein kinase C occurs through a different mechanism, the recruitment of a previously covert class of calcium channel. Under control conditions, bag cell neurons contain only one class of voltage-activated calcium channel with a conductance of approximately 12 pS. After exposure to agents that activate protein kinase C, these neurons also express a second class of calcium channel with a different unitary conductance (approximately 24 pS) that is never seen in untreated cells.  相似文献   

12.
D DiFrancesco 《Nature》1986,324(6096):470-473
Normal pacemaking in the mammalian heart is driven by spontaneously active cells located in the sino-atrial (SA) node. The rate of firing of these cells and the modulation of this rate by catecholamines are controlled by if, an inward Na- and K-current that turns on at voltages more negative than -40 mV. The 'pacemaker' current if is also present in other types of cell where its ability to produce and modulate a depolarizing process may be useful. For example, in vertebrate photoreceptors if drives the depolarization that terminates the light-induced hyperpolarization. Currents similar to if are also found in hippocampal neurones and DRG neurones. The present report shows for the first time that the opening of single if-channels of low conductance (1 pS) can be resolved using a modification of the patch-clamp technique on isolated SA-node cells. Modulation of if by adrenaline is shown to be mediated by an increase in the probability of channel opening, whereas the single-channel amplitude remains unchanged.  相似文献   

13.
P Gardner  D C Ogden  D Colquhoun 《Nature》1984,309(5964):160-162
Hypotheses concerning the mechanism by which acetylcholine-like agonists cause ion channels to open often suppose that the receptor-ionophore complex can exist in either of two discrete conformations, open and shut. On the basis of noise analysis it has been reported that certain agonists open ion channels of lower conductance than usual, though many potent agonists give similar conductances, and hence that differences in the conductance of ion channels opened by different agonists may contribute to differences in efficacy. Here we have reinvestigated this question by recording single ion channel currents evoked by acetylcholine-like agonists on embryonic rat muscle in tissue culture and on adult frog muscle endplate. Ten different agonists (Fig. 1) were tested, including several that noise analysis has suggested have a low conductance. The single-channel conductance was found to be the same, within a few per cent, for all 10 agonists. It seems that noise analysis has given erroneously low conductances in some cases. Therefore efficacy differences do not depend on differences in single-channel conductance evoked by various agonists but presumably on the position of the open-shunt equilibrium of the agonist-channel complexes.  相似文献   

14.
S G Cull-Candy  M M Usowicz 《Nature》1987,325(6104):525-528
In the mammalian central nervous system amino acids such as L-glutamate and L-aspartate are thought to act as fast synaptic transmitters. It has been suggested that at least three pharmacologically-distinguishable types of glutamate receptor occur in central neurons and that these are selectively activated by the glutamate analogues N-methyl-D-aspartate (NMDA), quisqualate and kainate. These three receptor types would be expected to open ion channels with different conductances. Hence if agonists produce similar channel conductances this would suggest they are acting on the same receptor. Another possibility is suggested by experiments on spinal neurons, where GABA (gamma-amino butyric acid) and glycine appear to open different sub-conductance levels of one class of channel while acting on different receptors. By analogy, several types of glutamate receptor could also be linked to a single type of channel with several sub-conductance states. We have examined these possibilities in cerebellar neurons by analysing the single-channel currents activated by L-glutamate, L-aspartate, NMDA, quisqualate and kainate in excised membrane patches. All of these agonists are capable of opening channels with at least five different conductance levels, the largest being about 45-50 pS. NMDA predominantly activated conductance levels above 30 pS while quisqualate and kainate mainly activated ones below 20 pS. The presence of clear transitions between levels favours the idea that the five main levels are all sub-states of the same type of channel.  相似文献   

15.
Measurement of the conductance of a hydrogen molecule   总被引:8,自引:0,他引:8  
Recent years have shown steady progress towards molecular electronics, in which molecules form basic components such as switches, diodes and electronic mixers. Often, a scanning tunnelling microscope is used to address an individual molecule, although this arrangement does not provide long-term stability. Therefore, metal-molecule-metal links using break-junction devices have also been explored; however, it is difficult to establish unambiguously that a single molecule forms the contact. Here we show that a single hydrogen molecule can form a stable bridge between platinum electrodes. In contrast to results for organic molecules, the bridge has a nearly perfect conductance of one quantum unit, carried by a single channel. The hydrogen bridge represents a simple test system in which to understand fundamental transport properties of single-molecule devices.  相似文献   

16.
B Sakmann  A Noma  W Trautwein 《Nature》1983,303(5914):250-253
Acetylcholine (ACh) released on vagal stimulation reduces the heart rate by increasing K+ conductance of pacemaker cells in the sinoatrial (S-A) node. Fluctuation analysis of ACh-activated currents in pacemaker tissue showed this to be due to opening of a separate class of K+ channels gated by muscarinic ACh receptors (m-AChRs). On the other hand, it has been suggested that m-AChRs may simply regulate the current flow through inward rectifying resting K+ channels (gk1). We report here the measurement of ACh-activated single channel K+ currents and of resting K+ channel currents in isolated cells of the atrioventricular (A-V) and S-A node of rabbit heart. The results show that the ACh-dependent K+ conductance increase in nodal cells is mediated by K+ channels which are different in their gating and conductance properties from the inward rectifying resting K+ channels in atrial and ventricular cells. The resting K+ channels in nodal cells are, however, similar to those activated by ACh.  相似文献   

17.
K W Yau  K Nakatani 《Nature》1985,317(6034):252-255
Recent experiments by Fesenko et al and ourselves have shown that excised membrane patches from retinal rod outer segments contain a cyclic GMP-sensitive conductance which has electrical properties similar to those of the light-sensitive conductance. This finding supports the notion that cGMP mediates phototransduction (see ref. 3) by directly modulating the light-sensitive conductance. However, some uncertainty remained about whether the patch experiments had discriminated completely between plasma and intracellular disk membranes; thus the cGMP response in an excised membrane could have resulted from contaminating disk membrane fragments, which are known to contain a cGMP-regulated conductance. Furthermore, the patch conductance has not yet been shown to be light-suppressible, an ultimate criterion for identity with the light-sensitive conductance. We now report experiments on a truncated rod outer segment preparation which resolved these issues. The results demonstrated that the cGMP-sensitive conductance was present in the plasma membrane of the outer segment, and that in the presence of GTP the conductance could be suppressed by a light flash. With added ATP, the effectiveness of the light flash was reduced and the suppression was more transient. The effects of both GTP and ATP were consistent with the known biochemistry. From the maximum current inducible by cGMP, we estimate that approximately 1% of the light-sensitive conductance is normally open in the dark; this would give an effective free cGMP concentration of a few micromolar in the intact outer segment in the dark.  相似文献   

18.
Previous observations on the structural and functional properties of porin, the matrix protein of Escherichia coli, have indicated that the channel-forming trimers span the outer membranes of the bacterial cell, forming a molecular sieve. By using electron microscopy and image reconstruction, we demonstrate here that three channels on the outer surface of the cell merge into a single channel at the periplasmic face. Conductance measurements using conditions under which single activated triplets could be observed led us to conclude that the three individual consecutive closing steps reflect three channels within a single trimeric unit. Statistical analysis of conductance levels revealed that the first relaxation step is distinctly smaller than the two subsequent channel closings. This functional observation can be explained if the channels of porin trimers coalesce.  相似文献   

19.
C Miller  E Moczydlowski  R Latorre  M Phillips 《Nature》1985,313(6000):316-318
The recent development of techniques for recording currents through single ionic channels has led to the identification of a K+-specific channel that is activated by cytoplasmic Ca2+. The channel has complex properties, being activated by depolarizing voltages and having a voltage-sensitivity that is modulated by cytoplasmic Ca2+ levels. The conduction behaviour of the channel is also unusual, its high ionic selectivity being displayed simultaneously with a very high unitary conductance. Very little is known about the biochemistry of this channel, largely due to the lack of a suitable ligand for use as a biochemical probe for the channel. We describe here a protein inhibitor of single Ca2+-activated K+ channels of mammalian skeletal muscle. This inhibitor, a minor component of the venom of the Israeli scorpion, Leiurus quinquestriatus, reversibly blocks the large Ca2+-activated K+ channel in a simple biomolecular reaction. We have partially purified the active component, a basic protein of relative molecular mass (Mr) approximately 7,000.  相似文献   

20.
感知无线电改进WiMAX性能研究   总被引:1,自引:0,他引:1  
为提高WiMAX系统频谱利用率,减小与其他系统之间的干扰,实现共存,利用感知无线电的周期图频谱检测和频谱池技术,对WiMAX性能加以改进。采用WiMAX系统802.16e基带链路,信道模型选用M.1225中规定的VA车载信道。在频谱感知模块中,频谱模型在由频点相互独立的256个瑞利衰落正弦信号叠加构成。每帧数据传输开始时,二级用户利用周期图频谱检测技术对信道频段进行检测,获得频谱空洞,然后采用频谱池技术在频谱空洞上传输数据。仿真结果表明,WiMAX系统中采用感知无线电技术,可在减小对二级用户干扰的同时,避免对一级用户的影响,从而提高了频谱利用率,使系统性能得到很大提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号