首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
采用共沉淀-微波法,利用自制加料装置合成了橄榄石型LiFePO4/C. 利用SEM、交流阻抗及恒流充放电技术对样品进行形貌表征和电化学性能测试. 结果表明微波8min样品具有均匀结构和较好电化学性能;0.2 C充放电表明,首次放电比容量157.81 mAh/g,53周循环后仍为156.15 mAh/g,材料具有良好的循环性能;1C充放电时,第一次放电容量为136.30 mAh/g,经20周循环后容量没有明显衰减,材料的倍率性能较佳.  相似文献   

2.
以累托石为原料,通过镁热还原制备多孔单质硅,然后以葡萄糖为碳源进行热处理覆碳制备Si/C负极材料。采用XRD、BET、SEM、TG分析了镁热还原条件对材料结构的影响,利用电化学工作站和电池充放电测试系统考察了Si/C负极材料的电化学性能。研究表明,累托石镁热还原的多孔硅的孔容、平均孔径、硅含量对Si/C复合材料的电化学性能有重要影响。随着镁热还原过程中金属镁质量的增加,制备的Si/C负极材料的电化学性能先增加后降低,当累托石与金属镁质量比为1∶0. 4时,制备的复合材料电化学性能最佳,在电流密度为0. 1 A/g时,材料首圈比容量最高可达1 120 mAh/g,循环200圈比容量仍能保持555 mAh/g。  相似文献   

3.
使用不同体积比的水/乙二醇作为溶剂,pH调至5,通过水热法制备出纯相的LiFePO_4,将其与质量分数10%的葡萄糖混合烧结,得到了含碳量不同的LiFePO_4/C材料.对所得产物进行XRD,SEM,TEM以及电化学性能测试,研究了具有不同形貌的产物对其的电化学性能的影响.结果表明不同形貌的LiFePO_4/C材料的电化学性能差异较大,其中pH=5条件下,水/乙二醇体积比为1∶1时材料的放电比容量最好,0.1C倍率下首次放电比容量为146mAh/g,充放电循环50次后,放电比容量没有明显的衰减,10C倍率下放电比容量为68mAh/g,充放电循环50次后,容量未见明显的衰减.  相似文献   

4.
采用sol-gel法制备了纳米级Co3O4材料,并用SEM表征了由此材料制备的电极的形貌. 对材料进行了恒流充放电测试,并通过充放电曲线研究了材料的容量和倍率性能. 结果表明,制备的钴氧化物的颗粒尺寸在20 nm左右,材料的可逆容量和电化学循环稳定性较目前商业化的碳材料有较为明显的提高,材料在1 C倍率下的首次可逆容量为964 mAh/g,第60次循环的可逆容量仍可达到786 mAh/g.  相似文献   

5.
采用液相共沉淀法与高温固相法合成了La2O3包覆Li(Ni1/3 Co1/3 Mn1/3 )O2的锂离子电池正极材料,采用XRD和电化学方法表征了材料的结构与电化学性能.结果表明,在1 000 ℃焙烧10 h制备的Li(Ni1/3 Co1/3 Mn1/3 )O2材料经包覆2%的La2O3后,具有较佳的电化学性能.其0.1 C倍率首次放电容量和首次充放电效率分别为151.2 mAh·g-1 和83 8%,首次循环后的交流阻抗为162.2 Ω,以0.2 C倍率循环20次后的放电容量为140.7 mAh·g-1 .  相似文献   

6.
通过固相烧结法制备了掺钴的LiFePO4/C正极材料. 采用充放电测试、循环伏安和交流阻抗等现代技术测试了样品的电化学性能. 结果表明,750 ℃烧结的掺钴样在2 C倍率电流下首次循环的放电容量达到115 mAh/g. 该样品50次循环的容量衰减率仅为2.61%,电化学性能稳定.  相似文献   

7.
以棉籽为原料、KOH为活化剂,利用微波辐射脱氢、炭化、活化制得类石墨烯结构炭材料.采用X射线衍射(XRD)、拉曼光谱(Raman)和透射电镜(TEM)对材料的晶体结构和形貌进行了表征.通过恒流充放电和循环伏安(CV)对材料的电化学性能进行了测试.结果表明:以棉籽为原料可制备出具有高比表面积的类石墨烯结构炭材料,该材料用于锂离子电池负极,电化学性能优良,并且库仑效率高.材料在充放电倍率为0.5C时,第1周放电比容量达1 817.4mAh/g,第2周放电比容量达到726.5 mAh/g,经过0.5C,1C,2C和5C循环回到0.5C的时,充放电比容量仍保留在648.1mAh/g.  相似文献   

8.
LiFePO4/C的制备及其电化学性能研究   总被引:1,自引:0,他引:1  
采用固相烧结法,在惰性气氛下制备了橄榄石型LiFePO4/C正极材料.通过充放电循环实验、循环伏安实验、交流阻抗、拉曼光谱等测试方法,研究了样品的优化制备条件与电化学性能的关系.研究表明,当以草酸亚铁为铁源时,720 ℃烧结的样品以1 C倍率电流充放电时,首次放电容量为113 mAh/g,50循环的放电容量为116 mAh/g,表现出优秀的循环稳定性.在30循环内,样品的电荷传递阻抗随着充放电循环的进行而减小.锂离子扩散系数为1.56×10-8 cm2/s.  相似文献   

9.
镁离子掺杂对LiFePO4/C复合正极材料性能的影响   总被引:1,自引:0,他引:1  
为了提高正极材料LiFePO4的电化学性能,采用两步固相法合成LiFe1-xMgxPO4/C(x=0、0.01、0.02、0.03、0.04)复合正极材料,并对所得样品进行XRD、SEM、以及充放电循环性能测试.测试结果表明:掺杂少量的Mg2+并没有影响材料的结构,所得样品都为单一的橄榄石型;充放电结果表明掺杂Mg2+为0.02的样品即LiFe0.98Mg<,002>PO4/C电化学性能最佳,在0.2C倍率下首次放电比容量为149.32 mAh/g,经过50个循环,仍然有138.37 mAh/g,衰减仅率为7.33%.  相似文献   

10.
采用高能球磨法和高温焙烧法,以氧化亚硅、石墨和葡萄糖为原料,制备了氧化亚硅/石墨/碳(SiO/G/C)复合材料,研究了其最佳制备条件和电化学性能.结果显示,在氩气中700℃下焙烧2h后所制得的SiO/G/C负极材料在质量比为SiO∶G∶C=34∶51∶15时具有最佳的电化学性能.该复合材料首次放电容量为803.5mAh/g,50周时放电容量仍保持在592mAh/g.XRD结果表明,该复合材料主要组成为SiO、石墨和无定形碳.石墨和无定形碳的添加对SiO的电化学性能有显著改善作用.  相似文献   

11.
采用控制结晶法制备富锂锰基固溶体正极材料Li1.17Mn0.53Ni0.2Co0.1O2,并采用AlF3对其进行包覆,通过XRD、SEM、TEM和电池充放电测试研究了AlF3包覆量对材料结构和电化学性能的影响.TEM观察表明,在颗粒表面形成一层10~20nm厚的AlF3包覆层.电化学性能测试表明,AlF3包覆可有效改善材料的循环性能,提高材料的放电比容量和库仑效率.当包覆量为1%时,样品具有最优异的电化学性能,在0.05℃下的首次放电比容量由未包覆时的228mAh/g提升至274mAh/g,库仑效率高达86.7%;在0.5℃下经50次循环后容量保持率为93%.  相似文献   

12.
以氢氧化锂为锂源,在真空条件下合成了锂离子电池正极材料LiFePO4.采用X射线衍射(XRD)、扫描电镜(SEM)对样品进行表征,并对其进行电化学交流阻抗(EIS)、循环伏安(CV)和恒流充放电等电化学性能测试,并与以碳酸锂为锂源制得的材料进行比较.结果表明:两种锂源在真空条件下合成的LiFePO4均具有单一的橄榄石相,而以氢氧化锂为锂源所得的材料粒度更小且分布更均匀,比容量更高.此外,以氢氧化锂为锂源时,通过在原料预烧后的前驱体中引入碳源得到的LiFePO4/C复合正极材料在0.2 C和1.0 C时的首次放电容量分别为138.4 mAh/g和126.8mAh/g,循环30次后仍能分别释放出135.6 mAh/g和123.9 mAh/g的可逆容量.  相似文献   

13.
本文通过超声分散、水热生长和煅烧方法制备了新型蜂窝结构Si/Co3O4复合负极材料,在此基础上研究其复合结构与电化学性能的关系。采用X射线衍(XRD)、扫描电子显微镜(SEM)和透射电子显微镜(TEM)对复合材料的物相、微观形貌进行表征,并采用电化学手段对其性能进行测试。结果表明:硅纳米颗粒主要分布于Co3O4蜂窝孔洞结构的内层;相比于纯Si负极材料,蜂窝结构Si/Co3O4复合材料具有更好的结构稳定性、倍率性能和循环性能,首次放电比容量为1475 mAh g-1,第二次维持在851 mAh g-1,经过75 次循环后放电比容量仍有 802 mAh g-1,较第二次比容量损失率仅为0.17%/周,这主要是归因于硅纳米颗粒和Co3O4之间存的空隙为Si负极嵌锂过程中的体积膨胀提供了空间,有效缓冲Si负极的体积变化。  相似文献   

14.
Co掺杂的LiCoxNi1-xO2材料具有优良的性能,有希望在锂离子二次电池中得到广泛应用.在电解法的基础上,通过相转移方法,制备了LiCoxNi1-xO2正极材料并对其进行了电化学性能测试.研究结果表明,合成的LiCo0.3Ni0.7O2正极材料具有良好的电化学性能,初始放电容量为156 mAh/g,经过40次充放电循环后放电容量仍可保持在140 mAh/g左右.  相似文献   

15.
采用流变相法成功合成了尖晶石Li2ZnTi3O8.X射线衍射(XRD) 分析结果表明所合成的尖晶石颗粒结晶良好.扫描电子显微镜(SEM)测试结果表明,所得Li2ZnTi3O8粒径较小,分散较均匀.将所合成的样品作为锂离子电池电极材料,采用充放电测试和循环伏安测试研究了其电化学性能.电化学性能测试结果表明,该材料的放电比容量和循环性能都较好,在0.05~3.0 V 电压下,以100 mA/g进行充放电,首次放电比容量为234.6 mAh/g,100次循环后放电比容量仍保持在208.5 mAh/g.  相似文献   

16.
用机械球磨法制备的C/Al、C/Si复合材料可作为镀离子电池的负极活性物质.研究结果表明,C_(0.7)Al_(0.3)和C_(0.8)Si_(0.2)(原子比)分别可以放出406mAh/g、和1039mAh/g的容量,远超过了原料碳的容量284mAh/g.经10次充放电循环、C_(0.7),Al_(0.3)放电容量衰退至251mAh/g.经20次充放电循环后C_(0.8)Si_(0.2)放电容量仍保持为749mAh/g.容量衰退主要是复合材料中包嵌入Al和Si部分容量衰退较快所致.  相似文献   

17.
采用酸碱溶胶凝胶法、高温热解法以及高能球磨法,制备了SiOx/C复合材料,并探索了其最优化的制备条件.结果表明,在一定的盐酸与氨水浓度下,分别以摩尔比为4/1、4/1、30/1的水/正硅酸乙酯、葡萄糖/正硅酸乙酯、乙醇/正硅酸乙酯为原料,在氩气中850℃下焙烧30min后再球磨5h即可制备得到电化学循环性能良好的SiOx/C复合材料.XRD结果表明,该复合材料主要组成为低结晶度的SiO2和C.所制备的复合材料首周充、放电容量分别为653.5mAh/g和972.7mAh/g,循环20周后仍保持在671.4mAh/g,具有良好的循环稳定性.  相似文献   

18.
水热法制备Co掺杂改性的锂离子电池层状正极材料LiV3-xCoxO8。经X射线衍射和扫描电镜分析表征材料的晶体结构和形貌,恒流充放电循环测试其电化学性能,结果表明:随着Co掺入量增加,材料初始放电容量有所降低,但循环性能得到明显改善,当掺杂量控制在0.01≤x≤0.08范围内时,LiV3-xCoxO8材料的循环性能和充放电可逆性均比未掺杂LiV3O8材料有明显改善。其中,LiV2.99Co0.01O8和LiV2.97Co0.03O8在40次循环之后,都能保持146 mAh.g-1的放电比容量。  相似文献   

19.
以葡萄糖为碳源,硫代硫酸钠为硫源,一锅法原位复合制备S/C复合材料前驱体,然后在充放电循环过程中原位电化学法制备得到了Cu2S/C复合材料,并对其作为锂离子电池正极材料的电化学储锂性能进行了研究.充放电测试结果表明,Cu2S/C复合材料具有良好的循环性能,首次可逆容量为255.4mAh·g-1,100次循环后容量仍保持在252.3mAh·g-1,容量衰减很少.同时,分别在0.2,0.5和1C(1C=337mA·g-1)电流密度下进行充放电性能测试,容量分别为232.8,207.6,183.8mAh·g-1,呈现出较好的倍率性能.  相似文献   

20.
采用溶胶-凝胶法制备了LiNi0.5Mn1.5-xTixO4,研究了材料结构和电化学性能. 电化学测试表明,当掺钛量为0.3时,材料具有较好的循环性能,在0.1 C,0.5 C和1 C充放电时,容量分别为134 mAh/g,127 mAh/g和76 mAh/g. 循环伏安测试显示,4.2 V和4.85 V出现2个氧化峰,在4.56 V和3.88 V出现2个还原峰,证实此材料中Mn存在+3和+4混合价态.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号