首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 109 毫秒
1.
The maritime glaciers are sensitive to climate change because of high annual precipitation and high air temperature in the region. A combined comprehensive study was carried out based on glacier mass balance observation, GPS-based glacier terminus position survey, glacier Ground Penetrating Radar, topography maps and RS satellite images in the Kangri Karpo Mountains, Southeast Tibet. The study revealed a strong ice mass loss and quick glacier retreat since the 1970s. Ata Glacier, one glacier from the south slope of the Kangri Karpo Mountains, has formed a 6-km-long terminal moraine zone at the end of the glacier since the 1970s, and the accelerating retreat is largely due to the strong glacier surface melting. Mass balance study on the other four glaciers on the northern side of the Kangri Karpo Mountains shows that they are in large negative mass balance and the glaciers had retreated 15--19 m from May 2006 to May 2007. The in-situ glacier observation also shows that the glacier retreat is more obvious in small glaciers. The enhanced ice mass deficit caused by climate warming and the ongoing extinction of many small glaciers in this region could seriously affect the water resources, environ- ments, local climate and regional sustainable development in the near future.  相似文献   

2.
Due to climate changes, most of the alpine glaciers have retreated dramatically during the past decades. Thus it is significant to predict the alpine glacier variability in the future for a better understanding of the impact of climate changes on water resource. In this paper, we perform the numerical simulation on Urumqi Glacier No.1 in the eastern Tianshan, central Asia (hereafter Glacier No.1 for short) by considering both the mass balance and ice flow. Given the shape of the Glacier No.1, the velocity of the glacier is obtained by solving a two-dimensional nonlinear Stokes equation and simulated result is in agreement with the observation. In order to predict the variability of Glacier No.1 in the next decades, a climatic scenario is constructed with a temperature rise rate as 0.17°C/10 a and precipitation as constant during the period of 2005-2070. The simulation shows that, the glacier terminus will retreat slowly and the glacier will thin dramatically before 2040, while after year 2040, the glacier terminus retreat will accelerate. This study confirms the increasing retreat rate of alpine glaciers under global warming.  相似文献   

3.
Interests on climate change in the source region of Yangtze River have been raised since it is a region with the greatest warming over the Tibetan Plateau (TP). A 70-year history of precipitation δ~(18)O has been recovered using an ice core record retrieved in a plat portion of the firn area in the Guoqu Glacier (33°34′37.8″N, 91°10′35.3″E, 5720 m a.s.l.), Mt. Geladaindong (the source region of Yangtze River), in November, 2005. By using a significant positive relationship between ice core δ~(18)O record and summer air temperature (July to September) from the nearby meteorological stations, a history of summer air temperature has been reconstructed for the last 70 years. Summer temperature was relatively low in 1940s and high in 1950s to the middle of 1960s. The lowest temperature occurred in the middle of 1970s. Temperature was low in 1980s and dramatically increased since 1990s, keeping the trend to the begin-ning of the 21st century. The warming rate recorded in the ice core with 0.5℃/10 a since 1970s is much higher that that in the central TP and the Northern Hemisphere (NH), and it becomes 1.1℃/10 a since 1990s which is also higher than these from the central TP and the NH, reflecting an accelerated warm-ing and a more sensitive response to global warming in the high elevation region.  相似文献   

4.
The glacier ELA is one of the important parameters reflecting climate change.Based on observations of the equilibrium line altitude(ELA) of Urumqi Glacier No.1 in the Tianshan Mountains,we established a statistical model between ELA and its major influencing factors,warm season air temperature(air temperature averages for May,June,July and August) and annual precipitation.Result showed that,warm season air temperature was the leading climatic factor influencing ELA variations.The glacier ELA ascends(descends) 61.7 m when warm season air temperature increases(decreases) by 1°C,and ascends(descends) 13.1 m when cold season precipitation decreases(increases) by 10%.In the period 1959-2008,the glacier ELA showed a general increasing trend,ascending108 m and reaching its highest altitude in 2008 at 4168 m a.s.l.,close to the glacier summit.If future climate is similar to that in the past 50 years,the ELA of Urumqi Glacier No.1 will still ascend with a speed of 2.16 m/a.However,If future climate is similar to that in the period 2000-2008,the ELA will still ascend with a speed of 6.5 m/a before it is stable.As a result of ELA variation,the accumulation area ratio(AAR) of the glacier showed a decreasing trend during the past 50 years.  相似文献   

5.
Pedersenbreen is a small polythermal valley glacier, located in Svalbard, which has been one of the two glaciers monitored by Chinese Arctic expedition members since 2004. This study estimates its area and volume and analyzes its change during 1936-1990-2009, using field collected GPS/GPR data in 2009 and historical topographic maps published by the Norwegian Polar Institute. We have found that Pedersenbreen is just like many other valley glaciers in Svalbard, having experienced a significant recession since the end of Little Ice Age in the early 20th century. The glacier tongue has retreated more than 0.6 km, while ice volume has decreased by approximately 13%. The overall thinning rate of Pedersenbreen has shown acceleration during the recent decades. Further analysis shows that the ice tongue in the downstream area of Pedersenbreen is melting at the highest rate, while a simultaneous accumulation occurred in the upstream. However, as global temperatures increase, the accumulation area is reducing year by year.  相似文献   

6.
Li  KaiMing  Li  ZhongQin  Gao  WenYu  Wang  Lin 《科学通报(英文版)》2011,56(33):3596-3604
The eastern Xinjiang Basin is desperately short of water. Most rivers in the basin originate in the high eastern Tianshan, which has abundant precipitation and numerous alpine glaciers. Fieldwork conducted on three reference glaciers around Mt. Bogda in 1981 and 2009 suggests that they all strongly melt in summer, a process that has tended to accelerate in recent decades. Based on topographic maps from 1962 and 1972 and 2005/2006 satellite imagery, we investigated 203 glaciers near Mt. Bogda and 75 glaciers near Mt. Harlik. The results show that the surface area of the Mt. Bogda glaciers decreased by 21.6% (0.49% a?1) from 1962 to 2006. This was accompanied by a 181 m decrease in length and a 28% drop in ice volume. In the Mt. Harlik region, areal extent was reduced by 10.5% (0.32% a?1), length by 166 m, and volume by 14% between 1972 and 2005. South-facing glaciers lost more of their area than those that are north facing, yielding an areal loss of 25.3% and 16.9% for southern and northern slopes of Mt. Bogda, respectively, and 12.3% and 6.6% for the comparable slopes of Mt. Harlik. Glaciers smaller than 0.5 km2 in area experienced the strongest retreat, whereas glaciers larger than 2 km2 in area experienced gentle recession but may be the main contributors in the future to river runoff. Glacial ablation in eastern Xinjiang tends to be strong, and the water resources in this region are deteriorating. Also, a heavy reduction in the capacity of the local karez system, as well as a significant change in river runoff, can be related to glacial retreat. Combined, this will adversely affect the downstream city of Urumqi and the Turfan Basin.  相似文献   

7.
By comparing digitized glacier outlines from the Chinese Glacier Inventory (CGI) during the 1960s–1970s and Landsat Enhance Thematic Mapper (ETM+) images from 1999 to 2001, we investigated changes for about 7665 alpine glaciers among 11665 glaciers in seven sub-basins of the Tarim Interior River basin (TIRB). The results showed that the total glacier area was reduced by 3.3% from the 1960s/ 1970s to 1999/2001 and area losses for 1–5 km2 glaciers accounted for 48.3% of the total glacier area loss in the TIRB. However, the glacier area reductions varied from 0.7% to 7.9% among the seven sub-basins of the TIRB during the study period. The glacier area changing with altitude showed that the maximum contribution of area shrinkage occurred at 4900–5400 m. Data from 25 meteorological stations in the TIRB showed increases in both the annual mean air temperature and annual precipitation during 1960–2000. This indicates that the glacier shrinkage in the TIRB over the last 40 years was largely due to regional climate warming that enhanced glacier ablation and overcame the effects of increased precipitation on the glacier mass balance.  相似文献   

8.
Ren  JiaWen  Ye  BaiSheng  Ding  YongJian  Liu  ShiYin 《科学通报(英文版)》2011,56(16):1661-1664
Recent studies have shown that cryospheric melting is becoming the dominant factor responsible for sea level rise,and that the melt-water from mountain glaciers and ice caps has comprised the majority of the cryospheric contribution since 2003.Analysis of the estimations of cryospheric melt-water and precipitation in glacier regions indicated that the potential contribution of the cryosphere in China is 0.14 to 0.16 mm a–1,of which approximately 0.12 mm a–1 is from glaciers.The contribution of glaciers in the outflow river basins is about 0.07 mm a–1,accounting for 6.4%of the total from global glaciers and ice caps.  相似文献   

9.
Based on the nonlinear Lyapunov exponent and nonlinear error growth dynamics, the spatiotemporal distribution and decadal change of the monthly temperature predictability limit (MTPL) in China is quantitatively analyzed. Data used are daily temperature of 518 stations from 1960 to 2011 in China. The results are summarized as follows: (1) The spatial distribution of MTPL varies regionally. MTPL is higher in most areas of Northeast China, southwest Yunnan Province, and the eastern part of Northwest China. MTPL is lower in the middle and lower reaches of the Yangtze River and Huang-huai Basin. (2) The spatial distribution of MTPL varies distinctly with seasons. MTPL is higher in boreal summer than in boreal winter. (3) MTPL has had distinct decadal changes in China, with increase since the 1970s and decrease since 2000. Especially in the northeast part of the country, MTPL has significantly increased since 1986. Decadal change of MTPL in Northwest China, Northeast China and the Huang-huai Basin may have a close relationship with the persistence of temperature anomaly. Since the beginning of the 21st century, MTPL has decreased slowly in most of the country, except for the south. The research provides a scientific foundation to understand the mechanism of monthly temperature anomalies and an important reference for improvement of monthly temperature prediction.  相似文献   

10.
Late Pleistocene glaciation of the Changbai Mountains in northeastern China   总被引:6,自引:0,他引:6  
Zhang  Wei  Niu  Yunbo  Yan  Ling  Cui  Zhijiu  Li  ChuanChuan  Mu  Kehua 《科学通报(英文版)》2008,53(17):2672-2684
The Changbai Mountains (2749 m a.s.l.) in northeastern China are one of the typical mountain regions with glaciation since late Pleistocene as evidenced by well-preserved erosive and accumulative landforms at elevations above 2000 m a.s.l, formed by glaciers around the crater lake, Tianchi Lake. Cirque glaciers developed on both the inner and outer sides of the volcanic cone. Well-preserved cirques, glacial trough valleys, glacial threholds, polished surfaces of the glacial erratics and the moraine ridges indicate that several glaciation processes took place during the last glacial period in this region. Resuits of optically stimulated luminescence (OSL) dating on the moraine sediments, and the K/Ar, thermal ionization mass spectrometry (TIMS), electronic spinning resonance (ESR) dating on the volcanic rocks suggest two periods of glacier advances. One is named the Black Wind Mouth glacier advance taking place on the west and north slopes of the volcanic cone at an elevation of 2000-2100 m a.s.l., which is dated to about 20 ka, being the result of the Last Glacial Maximum (LGM). The other is named the Meteorological Station glacier advance at the elevation of 2400-2600 m a.s.l., dated to 11 ka during the late glacial period, and is tentatively correlated to the Younger Dryas stage. The scope of the former glacier advance is larger than that of the latter. Regional comparisons showed that the glacial sequences in the Changbai Mountains are similar to other glaciated areas in eastern Asia during the later part of the last glacial cycle.  相似文献   

11.
Ma  LingLong  Tian  LiD  Pu  JianChen  Wang  PengLing 《科学通报(英文版)》2010,55(20):2088-2096
This paper calculated and evaluated the area and ice volume changes of Kangwure Glacier in Mt. Xixiabangma, middle of Himalayas in the past 3 decades, based on the field survey of glacier boundary position by differential GPS and glacier depth by Ground Penetrating Radar (GPR), together with the topographic map and remote sense data. The studied data showed that the Kangwure Glacier has experienced significant mass deficit since the 1970s, with 34.2% of area loss, 48.2% of ice volume loss and 7.5 m of average thickness decrease. This result revealed that the ice volume loss of Himalayan glaciers was more serious than expected. Analysis of meteorological data from two weather stations in the region of Mt. Xixiabangma, shows that the air temperature of this region has risen from the middle of the 20th century to the beginning of the 21st century. Significant retreat of Himalayas glacier driven by climatic warming will have a remarkable impact on hydrology and ecosystem.  相似文献   

12.
An ice core record at Mt. Qomolangma (Everest) since 1954 reveals a sharp decline in net-accumulation in the 1960s, and the annual net-accumulation during the 1970s to the beginning of the 1990s is only half of that at the end of the 1950s. The decreased net-accumulation is coincident with glacier retreat, which is associated with recent temperature increase in the region that intensified the ablation. Under the background of global warming, such glacier variation trends will aggravate.  相似文献   

13.
帕隆藏布流域位于中国海洋性冰川最为发育的藏东南地区,近年来随着全球温室效应加剧,帕隆藏布流域冰川变化极为显著。采用多期遥感影像,对1994~2015年间帕隆藏布流域波密至然乌段的冰川变化趋势、原因及其影响进行研究。结果表明:(1)20余年间冰川总面积减少了451. 72 km2,各冰川每年大约退缩2. 48%~2. 95%,气温升高以及降雨量减少是导致冰川面积持续退缩的主要原因。(2)由于帕隆藏布江南岸山坡所接收的太阳辐射热量更少,但降水却更加充沛,使得帕隆藏布江南岸冰川分布面积及覆盖率远大于北岸,而冰川退缩速率远小于北岸。(3)冰川的不断退缩使得沟道上游大量冻融松散物源在冰雪融水的外动力条件下,进入沟道形成松散堆积物源,导致流域内大规模发育冰川泥石流。由于帕隆藏布江南岸冰川规模更大,导致帕隆藏布江南岸冰川泥石流更为发育。(4)冰川变化动态监测对冰川泥石流机理分析以及预警研究工作有着重要的参考指导价值。  相似文献   

14.
The causes and timing of tropical glacier fluctuations during the Holocene epoch (10,000 years ago to present) are poorly understood. Yet constraining their sensitivity to changes in climate is important, as these glaciers are both sensitive indicators of climate change and serve as water reservoirs for highland regions. Studies have so far documented extra-tropical glacier fluctuations, but in the tropics, glacier-climate relationships are insufficiently understood. Here we present a (10)Be chronology for the past 11,000?years (11?kyr), using 57 moraines from the Bolivian Telata glacier (in the Cordillera Real mountain range). This chronology indicates that Telata glacier retreated irregularly. A rapid and strong melting from the maximum extent occurred from 10.8?±?0.9 to 8.5?±?0.4?kyr ago, followed by a slower retreat until the Little Ice Age, about 200 years ago. A dramatic increase in the rate of retreat occurred over the twentieth century. A glacier-climate model indicates that, relative to modern climate, annual mean temperature for the Telata glacier region was -3.3?±?0.8 °C cooler at 11?kyr ago and remained -2.1?±?0.8 °C cooler until the end of the Little Ice Age. We suggest that long-term warming of the eastern tropical Pacific and increased atmospheric temperature in response to enhanced austral summer insolation were the main drivers for the long-term Holocene retreat of glaciers in the southern tropics.  相似文献   

15.
This paper describes a multi-temporal grid method for quantifying changes in glacier coverage. A multi-temporal grid synthesizes spatial, attribute and process components of glacier information by sequentially combining spatial data from satellite images or maps. It enables us to identify glacier retreat and advance areas in individual grid cells for three or more periods of data sets. Discrepancies among the sequential data sets were detected graphically and numerically, including noise from geo-location error, misclassification, or different interpretation results in various pixel resolutions. Noise was detected and corrected to a large extent by visualization of the synthetic grid. The paper compares the results with that from a common method based on individual data sets, focusing on the Mt. Naimona'Nyi and Mt. Qomolangma regions at the northern slopes of the Himalayas. Results show that the identified noise (e.g. by 2.5 km2 in the Mt. Naimona'Nyi region) is much larger than measurement uncertainty calculated by sensor resolution and co-registration error (e.g. by 0.015 km2 in the Mt. Naimona'Nyi region). After noise removal, we notice that glacier recession clearly accelerates. The multi-temporal grid method results in a better quantification of glacier variation. It shows that glaciers in the Himalayas have both retreated and advanced during the last several decades, with retreat dominating and accelerating. Glaciers on the northern slope of Mt. Qomolangma in the middle Himalayas retreat more extensively and faster than those in the Mt. Naimona'Nyi region in the western Himalayas.  相似文献   

16.
Yang  Wei  Yao  TanDong  Xu  BaiQing  Ma  LingLong  Wang  ZhiHui  Wan  Ming 《科学通报(英文版)》2010,55(20):2097-2102
Little is known about recent variation of temperate glaciers on the Tibetan Plateau, although they are of particular theoretical and practical interests in terms of climate change and water supply. The study of glacier mass balance and terminus variation for six temperate glaciers in the Parlung Zangbo River basin, southeast Tibetan Plateau, shows the facts of the overall negative mass balance and the continued terminus retreat from 2005/2006 to 2007/2008. The mass balances of smaller glaciers were more negative compared to larger glaciers. Referring the trend of glacier mass balance in the Hengduan Mountains, the Himalayas and glacier shrinkage in southeast Tibetan Plateau, the mass loss and recession of temperate glacier in this region are expected if the current climate condition continues.  相似文献   

17.
基于Landsat遥感影像,采用目视解译的方法提取了青藏高原内部那曲地区冰湖和冰川1990、2000、2010及2020年4期边界数据,并分析近30年来该地区冰湖变化的特征与原因.结果表明:那曲地区现有冰湖255个,总面积(27.829±4.62) km2,冰湖主要集中在东南部,其次是西南部;1990—2020年,研究区新增冰湖72个,面积增长6.14 km2;冰湖扩张趋势明显,具体表现为低海拔地区(≤4 700 m)原有冰湖快速扩张,较高海拔地区(>5 100~5 700 m)新增冰湖集中出现;气温与降水是冰湖变化的关键因素,由于降水与气温分布及变化存在时空差异,冰湖变化呈现“南快北慢,逐期加快”的特征;冰湖与冰川的位置关系也会影响冰湖变化,离冰川位置越近,对冰湖发育越有利,同时与冰湖接触的冰川退缩速率相较于其余冰川有更大的退缩速率,但冰川与冰湖面积变化速率并无明显相关性.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号