首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 343 毫秒
1.
设计了一种钟摆式搅拌槽,对槽内流场和混合过程进行了数值模拟,分析了槽内流体的流动特性及加料方式对混合效果的影响。并对混合效率进行了评定.结果表明:钟摆式搅拌槽内桨叶上方区域的混合比桨叶下方要好;考察加料位置的影响时,自由液面加料的混合效果优于底部加料;整体来讲,自由液面加料时钟摆式搅拌槽的混合效率比较高,与三窄叶翼形搅拌桨相接近,槽底部加料时的混合效率要低一些,与六直叶圆盘涡轮桨相当.  相似文献   

2.
利用计算流体力学(CFD)模拟搅拌式反应器内生物的平均年龄分布,并建立了以平均年龄(均龄理论)为基础的混合时间模拟方法。通过比较混合时间的预测值与实验值结果,表明当反应器的高径比低于1.5∶1时,模拟结果和实验值的吻合度较高,平均误差在10%以内。对比单层四斜叶上翻桨(PBTU)和四斜叶下压桨(PBTD),PBTD的模拟结果都在实验值范围内,而PBTU的模拟结果都比实验值高,最大误差达14%。同时研究表明,模拟得到的N·θ准数不受反应器规模的影响。  相似文献   

3.
运用计算流体力学(CFD)技术对不同桨叶参数的侧入式搅拌槽内流场进行了数值模拟。模拟结果表明:搅拌槽内流场产生分层现象,下层流场为内部围绕搅拌槽中心的环形上升流和外部沿搅拌槽壁面的低速下降流组成的高速循环流,上层流场为与下层流场方向相反的低速循环流;在相同搅拌功率输入下,增大桨叶直径能够增加搅拌槽底部流体的动能,但会抑制搅拌槽上部流体的动能;叶片倾角为45°时桨叶的轴流性能最好,叶片个数为4时桨叶的搅拌效率最高。  相似文献   

4.
使用Fluent软件数值模拟行星式搅拌釜高黏熔体中固液混合过程,研究搅拌桨自转速度和安装高度对搅拌釜混合性能的影响.采用欧拉模型、动网格技术和用户自定义函数,在搅拌桨不同自转速度和安装高度下,数值计算了搅拌釜内固液两相流的流场、混合时间和搅拌桨的扭矩,用搅拌功率和单位体积混合能评价搅拌釜的混合效率.计算结果表明,搅拌桨自转速度从20r/mim提高到60r/min,物料混合时间缩短,搅拌功率和单位体积混合能增大,混合效率降低;搅拌桨安装高度从20mm增加到60mm,物料混合时间缩短,搅拌功率变化不大,单位体积混合能减小,混合效率提高.  相似文献   

5.
采用φ2m×4.2m侧伸式搅拌槽,研究了搅拌器在0.6m水位时的最佳安装位置下(三桨均匀分布,最佳偏转角βopt=10°,垂直夹角α为6°,推流桨安装高度h为0.75D,推流桨伸入长度与推流桨直径之比L/D=1.44)的局部速度。结果表明:搅拌槽内流体流速仅在槽内桨叶排液区较大;与立式推流桨的流场(轴对称,双峰值)相比,无论单桨还是三桨,侧伸式推流桨的流场不是沿轴线对称的;三桨同时启动时叶轮的排出流量准数Nqd为0.665,并外推得到单桨排出流量准数约为三桨排出流量准数的91.0%;在竖直方向上,叶轮排液区合速度和轴向速度的均值变化在左侧与右侧一致,而在叶轮上半部分与下半部分不对称;实验回归出单桨合速度与轴向距离的关系是V*=0.402Y*-0.151,三桨同开时V*=0.454Y*-0.049。  相似文献   

6.
固-液搅拌槽内槽底流场的CFD模拟   总被引:11,自引:0,他引:11  
使用计算流体力学CFD软件CFX-5.5.1对搅拌槽内固液流场进行了数值模拟。搅拌槽直径T=476mm, 槽内均布四块挡板,搅拌桨为CBYⅢ桨。两相物系采用玻璃珠-水体系,固体体积分数Фv为5.4%。文中使用标准κ-ε模型计算了清水与固液两相的流场,考察了槽内的流场的分布对固体颗粒悬浮状况的影响,同时把槽底的清水和Фv为5.4%的固液两相模拟结果与实验结果进行了对比,模拟结果与实验较吻合。  相似文献   

7.
搅拌式反应器内固-液两相悬浮特性的CFD模拟   总被引:2,自引:0,他引:2  
制备血液净化材料蛋白A免疫吸附柱过程中,搅拌式生物反应器的优化设计与放大技术是工业开发的重要环节.该文采用标准κ蛳ε湍流模型、多重参考系法,模拟搅拌式反应器内琼脂糖凝胶溶液加入固体催化剂后,形成的固蛳液两相体系的混合和悬浮特性.分别对DT、PBTD45、PBTU45搅拌桨的固相悬浮性能进行了研究,预测了完全离底悬浮的临界转速,并与Zwietering公式进行了比较.通过数值模拟,为反应器的优化设计提供了参考依据.  相似文献   

8.
针对当前混合澄清萃取槽存在的问题,提出了改进的新型混合澄清萃取槽.采用专业的流体力学数值模拟软件ANSYS/FLUENT,对新型萃取槽内流场情况进行了模拟研究.结果表明,在油水两相流速分别为0.22和0.11 m/s,混合室搅拌转速为800 r/min,澄清室搅拌转速为20 r/min时,与传统萃取槽相比,在搅拌作用下,新型萃取槽澄清室内桨叶附近的混合带更窄,两相分离效果更佳;混合室内桨叶上下方流场呈涡旋流,与六直叶涡轮桨搅拌特点相符.  相似文献   

9.
在直径为0.285m的立式搅拌槽中,通过测定氯化钾溶液结晶的平均粒径、分布以及不同桨型的混合时间,对CBY桨、锚式桨等桨型在反应结晶过程中的效果进行了实验研究。结果表明,大直径(D/T=0.67)的下压式两叶CBY+三叶后掠桨的组合,最适用于反应结晶过程,而工业中适用于降温结晶操作的锚式桨,不能同时满足结晶与反应的要求。晶体平均粒径dm与叶端线速度v的0.15~1.76次方成反比,晶体大颗粒分数x(0.45~0.6mm) 与叶端线速度v的1.7~3.59次方成反比。  相似文献   

10.
以直径为0.34 m的无挡板平底圆筒形搅拌槽为研究对象,对偏心搅拌槽内高浓度浆液中颗粒的悬浮特性进行了数值研究,分析了45°的4斜叶开启涡轮式搅拌桨(PBT)和3窄叶整体板式螺旋桨(ZHX)2种桨型在不同偏心率和转速时,搅拌槽内的流型分布、颗粒体积分数分布、完全离底临界悬浮转速以及功率消耗,并与试验结果进行了对比.结果表明:对于高浓度浆液,偏心搅拌打破了中心搅拌时流场结构的对称性,提高了流体的轴向循环能力,颗粒悬浮效果优于中心搅拌;固体颗粒的悬浮效果与搅拌桨在槽内的偏心位置有关,当偏心率E=0.4时颗粒悬浮效果最佳,但偏心搅拌会增大颗粒的完全离底临界悬浮转速和设备的功率消耗,不利于节能降耗.  相似文献   

11.
采用粒子图像测速技术 (PIV),对直径为0.19 m的三层组合桨 (HEDT+2WH) 搅拌槽 (直径为0.48 m) 内的流场进行了实验研究,并利用标准 k-ε 模型对相应的流动特性进行了数值模拟。实验结果表明:通过改变层间距、顶层桨的浸没深度及上两层桨的操作方式可以得到4种不同流型,每种流型内循环结构的数目各不相同;上两层桨下压式操作时,流场的循环结构最少,只有两个;高速区和高能量区的分布相同,都位于各个桨叶的射流区内,且底桨射流区内的速度值和湍流动能值都大于上两层桨。模拟结果表明:标准 k-ε 模型对流场的预测较为准确,但对于有5个循环结构的流型模拟误差较大;湍流动能分布型式的模拟值与PIV实验结果吻合较好,但数值偏低,表明标准 k-ε 模型在预测复杂流型时需要改进;功率准数的模拟值与实验值基本一致。  相似文献   

12.
多层桨搅拌槽内的宏观混合特性   总被引:4,自引:0,他引:4  
在直径为0.476 m的搅拌槽内,采用电导法测定搅拌槽内单层桨和多层桨体系的混合时间。对于单层桨体系,在相同的搅拌输入功率下,不同类型的径向流桨和轴向流桨具有相同的混合时间。对于窄叶翼型CBY搅拌桨,在相同的搅拌输入功率下,单层、双层以及三层CBY搅拌桨的混合时间基本相同;而对于六直叶涡轮桨DT-6,在相同的搅拌输入功率下其混合时间随桨叶层数的增加而加长;多层CBY桨的混合时间远低于多层DT-6搅拌桨的混合时间。  相似文献   

13.
利用计算流体力学的方法,采用Laminar层流模型对双层六直斜叶交替组合桨在甘油与水的混合物中进行中心及偏心搅拌的三维流场进行数值计算,得到了组合桨以恒转速200r/min在搅拌槽内转动时所产生的3种不同流场结构,对比分析了速度矢量图、速度云图以及轴向、径向和周向速度分布曲线,为层流搅拌槽的设计和实际应用提供了依据。  相似文献   

14.
搅拌槽内不同桨型组合的气-液分散特性   总被引:6,自引:0,他引:6  
在直径为0.476m的椭圆底搅拌槽内,分别研究径向流桨(八弯叶涡轮CDT-8)组合、轴流式搅拌桨(四叶宽叶翼形WH桨)组合及混合流型组合桨(径向流的六叶半椭圆管盘式涡轮HEDT与三窄叶翼形桨CBY)的通气功率及气含率,并得到了相应的通气功率和气含率的经验关联式。结果表明:HEDT底桨配合CBY轴流桨的混合流组合桨的RPD值下降最少,轴向流组合次之,而径向流组合桨RPD下降最多;在相同的通气搅拌功率下,在低通气量时,轴向流组合桨的气含率最高,在较高的通气流量时,混合流及径向流组合桨的气含率相当,均高于轴向流组合桨。文中的研究结果可为工业多层桨气-液搅拌槽/反应器的优化设计提供参考。  相似文献   

15.
以NaCl颗粒在水中的溶解为例,对湍流状态下周期性变速旋转的(改变桨叶转向或速度大小,分别称为周期性换向搅拌和周期性依时搅拌)Rushton桨搅拌槽内的混合特性进行了实验研究,并与稳速搅拌进行了对比。实验过程中测量了不同搅拌模式、不同桨叶安装高度时颗粒的溶解时间,结果证明,搅拌槽底部的流型对NaCl的溶解有重要影响;桨叶安装高度对溶解速度的影响不大,周期性依时搅拌时的溶解时间比稳速搅拌时稍短,而周期性换向搅拌则能明显加快溶解速度,提高混合效率。  相似文献   

16.
组合桨层间距对搅拌槽内流动特性的影响   总被引:2,自引:0,他引:2  
采用粒子图像测速技术(PIV)对三层组合桨(HEDT+2WHU)搅拌槽(槽径0.476m)内的流动特性进行了研究,在搅拌转速、顶桨浸没深度和顶层桨高度不变的情况下,得到了中层桨位置的变化对搅拌槽内的流型、相位解析速度场和湍流动能的影响规律。结果表明,中层桨位置的改变对搅拌槽上部区域流体的流动特性影响显著,而对搅拌槽下部区域流体的流动特性产生影响较小;随中层桨位置降低,槽上部液面处反向回流区逐步缩小直至消失,中、顶层桨合并轴向流断裂,底桨上涡环作用范围不断压缩;对于相位解析速度场,较之中层桨尾涡几乎没有变化,顶桨尾涡的发展由极其微弱逐渐清晰,底桨尾涡则提前了10°相位出现;对于湍流动能分布,中、上层桨逐渐趋向于类似两层桨单独作用,底、中层桨间整体湍流动能增大。  相似文献   

17.
在直径为300mm的搅拌槽内,采用碘化物-碘酸盐方法研究了桨叶排出区管内返混现象。桨叶排出区内,采用内径为1.55mm的水平直管加料,管内返混现象严重,离集指数随转速的增加而增加。本文首次研究弯管加料对管内返混现象的影响,发现向上弯曲90°的弯管不能有效避免管内返混现象;将加料管向后弯曲135°可有效避免管内返混现象。此外,缩小直加料管内径,增加管口出口速度同样可以有效避免管内返混现象。针对新型半椭圆涡轮桨(HEDT),本实验测得避免管内返混的临界条件为加料管出口速度与叶端线速度的比值vf/vtip大于0.05。  相似文献   

18.
搅拌槽内流体作用力下搅拌桨叶的应力计算   总被引:1,自引:0,他引:1  
文中利用搅拌槽流场模拟的数据,结合有限元分析软件ANSYS,对翼形CBY搅拌桨进行了应力分析.文中采用了一种插值方法,实现了从流场数据到有限元模型载荷的数据交换,并对一个实验搅拌桨进行了应力分析,其分布规律与参考文献的实验测量值一致。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号