首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
铜基粉末冶金摩擦材料的湿式摩擦性能   总被引:1,自引:0,他引:1  
采用粉末冶金方法制备铜基湿式摩擦材料,利用金相技术分析材料表面的微观结构,并用MM-1000摩擦试验机研究制动条件对动摩擦因数影响的变化规律。研究结果表明:添加短切炭纤维增强的材料能有效提高材料的能量许用负荷和摩擦因数;摩擦副的制动速度为1500r/min和2500r/min时,摩擦因数随制动压力的增加而减小;摩擦副的制动速度为3500r/min时,摩擦因数随制动压力的增大呈现先降低而后增大的趋势;当制动压力为1.0MPa和1.5MPa时,摩擦因数随制动速度的提高而缓慢减小;当制动压力为2.0MPa和2.5MPa时,摩擦因数随制动速度的增加呈现先减小而后急剧增大的趋势。  相似文献   

2.
采用放电等离子烧结技术(spark plasma sintering,SPS)制备铜基粉末冶金摩擦材料,研究石墨烯微片含量对铜基粉末冶金摩擦材料物理性能和摩擦磨损性能的影响。结果表明:当石墨烯微片质量分数低于4%时,材料的密度、孔隙率和抗剪切强度随石墨烯微片含量的增加而升高;当石墨烯微片质量分数超过4%后,材料的密度、孔隙率及抗剪切强度随石墨烯微片含量的增加而略微减小;石墨烯微片质量分数为4%时,铜基粉末冶金摩擦材料具有最优的摩擦性能,此时其布氏硬度为82,剪切强度为98.73 MPa。  相似文献   

3.
为了提高制动闸片的使用性能,采用粉末冶金技术制备Al_2O_3和SiO_2质量分数配比分别为2∶6、4∶4、6∶2和8∶0的铜基摩擦材料,测定其密度和硬度。用MM1000-Ⅱ型摩擦磨损试验机测试其摩擦磨损性能;用扫描电镜观察其表面的摩擦形貌,并分析其摩擦磨损机制。分析结果表明:随着Al_2O_3质量分数的增加,制动材料的孔隙率减小,布氏硬度增加。当制动初速度较低(2303 r/min)时,随着Al_2O_3质量分数的增加,制动材料的摩擦因数减小,耐磨性能逐渐提高;当制动初速度较高(5 757 r/min)时,随着Al_2O_3质量分数的增加,制动材料的摩擦因数减小,耐磨性能先升高后降低。  相似文献   

4.
采用粉末冶金工艺制得Cu基摩擦材料。利用MM1000-Ⅱ型摩擦磨损试验机对材料进行性能测试,用扫描电镜观察磨痕并分析磨损机理。分析结果表明:一定制动压力条件下,随着制动速度的增加,摩擦因数和磨损率均呈现先增大后减小的趋势。制动速度为250~300 km/h时,材料的制动性能最好。在不同的制动速度条件下,材料摩擦因数的稳定因数均保持在较大值,材料表面状态较为稳定。一定制动速度条件下,随着制动压力的增加,摩擦因数先增大后减小,磨损率逐步增大并趋于稳定;0.4 MPa时摩擦因数达到最大值0.35,此时材料的制动性能最好。  相似文献   

5.
采用粉末冶金技术制备风电机组用的铜基摩擦材料。研究在不同的摩擦速度下,石墨的含量对材料的摩擦磨损性能的影响。结果表明:材料的磨损率随着摩擦速度的增加而增加。随着石墨含量的增加,材料的磨损率增加,由于石墨破坏基体的连续性使得材料的强度降低,从而使材料的磨损率增加。材料的摩擦系数随着石墨含量的增加而降低,这是因为材料摩擦过程中摩擦表面形成具有润滑作用的摩擦膜。石墨含量为10%的材料具有较好的摩擦磨损性能。  相似文献   

6.
为研究液体火箭发动机密封材料——铜基石墨材料的摩擦磨损规律,采用销盘试验考察了铜基石墨材料在干摩擦和水润滑条件下的摩擦磨损性能和磨损机理,探讨了速度、载荷、摩擦温升对材料摩擦磨损性能的影响,结果表明:水润滑条件下不易形成铜基石墨转移膜,所以水润滑时的摩擦因数比干摩擦时的摩擦因数大;水润滑下,磨损机理为黏着和磨粒磨损,适当增加载荷、降低速度有利于降低铜基石墨材料的磨损率;干摩擦下,磨损机理为黏着磨损,适当降低载荷、提高速度有利于降低铜基石墨材料的磨损率。  相似文献   

7.
研究了添加铝粉或锡粉以及用6-6-3青铜粉全部或部分代替铜粉所制得的粉末冶金铜基摩擦材料,分析了基体成份对材料硬度、摩擦因数和磨损量的影响.研究结果表明:与纯铜基材料相比,铝含量为3.5%(质量分数)或含少量6-6-3青铜粉的摩擦材料,在低转整、小比压时,摩擦因数不降低,而磨损量减小,硬度得到提高;含锡摩擦材料的摩擦因数和磨损量都急剧降低,但硬度增加.  相似文献   

8.
采用粉末冶金技术分别制备了不同含量的中间相炭微球和鳞片石墨铜基粉末冶金摩擦材料,并研究其力学性能和摩擦磨损性能,借助扫描电子显微镜和能谱仪分析材料磨损表面、亚表面以及微区成分。研究结果表明,随着中间相炭微球质量百分比从1 wt%增加到5 wt%,铜基粉末冶金摩擦材料的布氏硬度和压缩强度分别下降了23. 7%和19. 8%;制动速度为4 000 r/min时材料的摩擦系数分别是0. 26和0. 29,磨损率分别是5. 8×10~(-8)cm~3/(N·m)和3. 0×10~(-8)cm~3/(N·m),表明中间相炭微球—铜基粉末冶金摩擦材料的摩擦系数稳定,润滑效果好;中间相炭微球—铜基粉末冶金摩擦材料的主要磨损机理为磨粒磨损、疲劳磨损以及粘着磨损共同作用。  相似文献   

9.
以WC-(5,7,9)Ni硬质合金与SiC陶瓷材料为摩擦副,在MMU-10型屏显式材料端面摩擦磨损试验机上,研究该摩擦副材料在干摩擦条件下,不同压强、不同滑动速度时的摩擦磨损行为,利用扫描电子显微镜观察磨损后的表面形貌.结果表明:当压强一定时,随着滑动速度的增加,WC-Ni/SiC摩擦副的摩擦因数逐渐下降,并趋于平稳;当滑动速度一定时,随着试验压强P的增加,摩擦因数逐渐减小;摩擦因数还随合金中Ni含量的增加而增大;硬质合金的磨损量随材料的硬度降低而增大;当滑动速度0.95 m/s时,摩擦副材料的磨损机制与合金成分和试验压强P有关,当p=0.015 MPa时,WC-5Ni/SiC为粘着磨损,WC-7Ni/SiC和WC-9Ni/SiC表现为粘着和磨粒磨损综合作用机制;当p=0.60 MPa时,3种摩擦副的磨损机制主要是磨粒磨损.  相似文献   

10.
为了探究烧结温度对铜基粉末冶金摩擦材料性能的影响,通过四种温度(825、850、875、900 ℃)热压烧结,成功制备了铜基粉末冶金摩擦材料。研究了材料的微观组织、密度、硬度、抗压强度、摩擦性能,由此得到材料的较佳烧结温度。结果表明,在四种烧结温度下,材 料中的各元素能均匀地分布在Cu基体中。随着烧结温度的升高,密度、硬度、抗压强度和摩擦因数都先增大后减小,而孔隙率和磨损量先减小后增大。Cr能改善Cu与C之间的湿润性,提高金属基体与非金属组元之间的结合强度,从而使材料的密度增大;Ni、Mn能向Cu中扩散,形成固溶体,阻碍位错运动,提高材料的硬度。铜基粉末冶金摩擦材料较佳烧结温度为850 ℃,此时的密度为6.17 g/cm3,孔隙率为8.62%,维氏硬度为81.2,抗压强度为172.8 MPa,摩擦因数为0.37,磨损量为0.074 g。  相似文献   

11.
SiCp/Al复合材料制动盘用树脂基摩擦材料研究   总被引:3,自引:0,他引:3  
为了选择适合于SiCp/Al复合材料制动盘的树脂基摩擦材料增强纤维,采用MG-2000摩擦磨损试验机研究了钢/钢纤维、Kevlar纤维/钛酸钾晶须以及碳纤维3种增强体系摩擦材料的摩擦磨损性能.结果表明,钢/铜纤维增强摩擦材料具有最高的摩擦因数和适当的磨损率,因此钢/铜纤维适合作为SiCp/Al复合材料制动盘用摩擦材料的增强纤维.摩擦表面的SEM形貌显示,钢/铜纤维摩擦材料的摩擦表面主要由铜纤维涂抹形成的大块不连续的摩擦膜组成;Kevlar纤维/钛酸钾晶须摩擦材料的摩擦膜细密而又连续;碳纤维摩擦材料表面没有形成致密的摩擦膜.  相似文献   

12.
采用模压成型工艺制备CaSO_4晶须增强树脂基复合材料,并选用一种市售材料作对比,研究摩擦时间对两种材料摩擦学性能的影响,利用SEM及EDAX观测磨损表面形貌及成分变化,分析其磨损机理.结果表明:随着摩擦时间的变化,自制材料摩擦系数维持在0.45左右,制动平稳性较好,磨损机理以磨粒磨损为主;市售材料摩擦系数在0.32~0.36范围内波动,制动过程易产生颤动和噪声,磨损机理以粘着磨损和热疲劳磨损为主;两种材料摩擦表面平均温度及其磨损率均随着摩擦时间的延长而逐渐升高,且与对偶件存在明显的粘着效应.  相似文献   

13.
采用离心铸造方法制备了高铅锡青铜(ZCu Pb22Sn1.5)合金,研究了载荷和摩擦速度对其摩擦磨损性能的影响及摩擦磨损机理.研究发现:在0.05 m/s摩擦速度下,随着载荷的增加,高铅锡青铜合金摩擦系数减小,磨损率增加,当载荷增加到120 N后,摩擦系数趋于稳定;在100 N载荷下,随着摩擦速度的增加,摩擦系数逐渐减小,磨损率增加,摩擦速度增加到0.10 m/s以后,摩擦系数迅速减小,到0.20 m/s以后摩擦系数趋于稳定;当继续增加载荷和摩擦速度时,由于铅润滑膜的破坏而增加了磨损率.在摩擦磨损过程中容易在摩擦表面形成软质铅润滑膜从而起到耐磨作用.  相似文献   

14.
树脂粘结剂含量对汽车摩擦材料性能的影响   总被引:1,自引:0,他引:1  
选定国产改性酚醛树脂作为汽车摩擦材料树脂粘结剂基体,研究了不同树脂含量对材料机械性能和摩擦磨损性能的影响,并通过SEM 和EDAX表观分析来确定摩擦材料中树脂粘结剂的最佳含量.研究结果表明:在所选定的6 % ~14% 树脂含量(质量分数)范围内,材料的冲击强度都能满足使用要求.树脂含量在14% 及其以上时,材料高温热衰退严重,导致摩擦因数下降,高温磨损加剧,磨损量上升;在树脂含量过高或过低时,材料将因粘结剂量过少或树脂高温分解导致粘结力下降,使增强纤维存在拔出现象,导致摩擦因数不稳定,材料磨损加剧.综合各项性能,得出:摩擦材料中基体树脂用量不宜太多,其含量以8% ~12 % 为佳,其中以8% 为最佳.该结论在桑塔纳轿车无石棉盘式刹车片的研制中得到验证  相似文献   

15.
采用爆炸喷涂技术制备了碳化钨涂层,利用HT-1000高温摩擦磨损试验机研究了碳化钨涂层高温下摩擦磨损性能,通过扫描电子显微镜和X射线衍射分析了涂层磨损表面形貌、元素分布和相结构.结果表明:碳化钨涂层由雪花片状颗粒堆叠而成,如山地状,结合紧密.定温条件下,摩擦因数随着试验温度升高而减小,试验温度为550℃时,摩擦因数最小;磨损量随着温度升高而增大,550℃时,磨损量由于配副材料的转移出现了负增加.温度低于350℃时,磨损表面具有撕裂、轻微黏着和磨粒磨损痕迹;在550℃时,磨损表面发生了剥落、严重黏着和氧化磨损.连续升温条件下,温度低于300℃时,摩擦因数较小,在350~550℃范围内,摩擦因数波动较大;磨损表面以剥层、黏着和氧化磨损为主.  相似文献   

16.
天然海水润滑下不锈钢316L与PEEK450CA30的摩擦磨损性能   总被引:1,自引:0,他引:1  
为了寻找适合于低速大扭矩水液压马达配对副的材料,采用MMU-5G屏显式高温材料端面摩擦磨损试验机考察不同转速、不同载荷下,摩擦副316L-PEEK450CA30在海水中的摩擦磨损性能,并借助OLYMPUS-SZX体式显微镜对试样的磨损表面进行形貌观察。结果表明:在转速和载荷比较低的情况下,摩擦副316L-PEEK450CA30的摩擦系数较小,磨损性能较好;当转速或载荷增大时,摩擦副的摩擦系数和接触面的磨损情况会急剧增大。在转速300r/min、载荷100N和转速100r/min、载荷300N的情况下,摩擦副316L-PEEK450CA30还会发生轻微的黏着磨损。最后得出,当转速为100r/mim、载荷为100N时,对偶副间的摩擦系数最小,耐磨损程度最好,适合作为低速大扭矩水液压马达的对偶副材料。  相似文献   

17.
通过在汽车发动机的润滑系统中应用金属磨损自修复材料技术,研究自修复材料保护层的摩擦性能、显微硬度,在行车试验中研究自修复材料技术对发动机的动力性能、节油、尾气等综合性能指标,并在形成自修复材料保护层的性能下进行了无机油行驶的研究.实验证明自修复材料可对已磨损的零件表面进行不拆卸原位修复,自修复材料保护层具有超低的摩擦系数.  相似文献   

18.
采用D MS定速式摩擦试验机 ,测定 3种金属纤维 (钢纤维、黄铜纤维和紫铜纤维 )增强的半金属摩擦材料与灰铸铁在不同温度下滑动摩擦的摩擦磨损性能 ,并收集磨屑 ,借助SEM扫描电子显微镜 ,观察、分析磨屑的形貌 ,研究材料磨损的内在机制 .研究结果表明 :紫铜纤维增强的摩擦材料与灰铸铁间的摩擦因数最稳定 ,磨损率最低 ;低温时 ,3种材料的磨屑均比较细小 ,在少数大颗粒的表面可以观察到较深的划痕 ,有的带有明显的裂纹 ,说明该磨损主要由犁沟及微切削作用引起 ;高温时 ,磨屑多呈较大的块状或薄片状 ,这是粘结剂的高温分解和摩擦表面膜的热裂分解所致 ;对于铜纤维 (黄铜或紫铜 ) ,在摩擦过程中还会发生铜在对偶表面的涂抹现象 ,这也是影响其摩擦磨损性能的一个重要因素  相似文献   

19.
不同刹车压力下C/C复合材料的摩擦磨损性能   总被引:6,自引:0,他引:6  
研究了粗糙层和光滑层2种不同热解炭与树脂炭混合基体炭/炭复合材料在不同制动压力下的摩擦磨损性能,且对摩擦表面与磨屑进行了SEM观察和分析,并采用X射线衍射与激光喇曼光谱测定了在不同刹车压力下摩擦表面的石墨化度.研究结果表明:C/C复合材料的摩擦因数由摩擦表面所形成的摩擦膜所决定,随着刹车压力的增大,摩擦膜更完整平滑,摩擦因数呈降低趋势,磨损则随刹车压力的增大而呈增大趋势;粗糙层结构C/C复合材料即使在高制动压力下,仍能具有较高的摩擦因数,显示出优良的高压摩擦性能;高压下摩擦表面会发生应力石墨化作用,这是高压下摩擦因数下降的原因之一.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号