首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
本文论述了水玻璃作为碱组份在碱—矿渣水泥中的作用,研究证明:它为矿渣活性激发提供了碱性环境,又为碱—矿渣水泥提供溶胶体系。实验表明,浆体强度是由矿渣水化产物和水玻璃溶胶共同产生,指出了碱激发增强和溶胶增强作用的转换关系,并得出了实验数据。  相似文献   

2.
碱-矿渣水泥浆体的碳化过程研究   总被引:2,自引:0,他引:2  
针对碱-矿渣水泥水化产物中不存在Ca(OH)2且碳化比较严重的现象,选择水玻璃和NaOH作碱组分,采用X-射线衍射仪和可变真空扫描电子电镜研究了碱-矿渣水泥浆体的碳化产物和微观形貌,结合氮吸附方法分析了碳化对碱-矿渣水泥浆体孔结构的影响.结果表明:碱-矿渣水泥浆体的碳化是CO2直接和水化硅酸钙(C-S-H)凝胶发生作用的结果,碳化后生成的碳酸钙主要以方解石的形式存在;碳化后,C-S-H凝胶的Ca与Si原子比降低,浆体的比表面积增大,平均孔径降低,而累积孔体积的变化情况和碱组分有关.  相似文献   

3.
分别研究了不同碱金属阳离子与硅酸根质量比(M/Si)的钠、钠钾复合硅酸盐溶液,和由硅酸盐溶液激发的碱矿渣水泥浆体的黏度和凝结时间。结合硅酸盐溶液的傅里叶红外光谱试验,对溶液中硅酸根离子的聚合度进行了研究。结果表明:硅酸盐溶液的M/Si越低,硅酸根的聚合度越小。在硅酸钠溶液体系中掺入一定量的K~+可以降低体系中硅酸根离子的聚合度,显著降低溶液和浆体的黏度,提高碱矿渣水泥的工作性能。同时,在较低M/Si(M/Si≤1.5)情况下,K~+的加入还能够延长碱矿渣水泥的初凝时间。  相似文献   

4.
分别研究了不同硅酸根与碱金属阳离子比(Si/M比)的钠、钠钾复合硅酸盐溶液和由硅酸盐溶液激发的碱矿渣水泥浆体的黏度和凝结时间。并结合硅酸盐溶液的傅里叶红外光谱试验对溶液中硅酸根离子的聚合度进行研究。结果表明:硅酸盐溶液的Si/M比越低,硅酸根的聚合度越小。在硅酸钠溶液体系中掺入一定量的K+离子可以降低体系中硅酸根离子的聚合度,显著降低溶液和浆体的黏度,使碱矿渣水泥获得更好的工作性能。同时,在较低Si/M比(Si/M≤1.5)情况下,K+离子还能够延长碱矿渣水泥的初凝时间。  相似文献   

5.
为探究Na+在碱激发矿渣基地聚物中的移动与分布,以矿渣为前驱体原材料,以液体水玻璃为碱激发剂,在实验设计条件下[n(Si O2)/n(Na2O)=1. 8,n(Na2O)/n(Al2O3)=1. 1],通过调节水掺量制备n(H2O)/n(Na2O)分别为18. 52、21. 03、24. 95的矿渣基地聚物。利用X射线荧光光谱分析仪(XRF)、比表面积与孔隙度测试仪、孔隙率测试及浸出试验等表征手段,对比了不同n(H2O)/n(Na2O)的矿渣基地聚物的性能、结构及其钠含量分布。研究结果显示,n(H2O)/n(Na2O)改变影响碱激发矿渣基地聚物的孔结构,孔径随n(H2O)/n(Na2O)的增大有细化的趋势,而孔隙率则随之增加; Na+随水分在孔隙网络中移动,导致地聚物不同高度位置的钠含量和碱浸出率存在差异,n(H2O)/n(Na2O)的增大使地聚物的钠含量分布曲线变陡,Na+的迁移趋势更明显;地聚物顶部附近的钠含量和碱浸出率最大,意味着其在理论上具有更强的泛碱趋向,间接说明Na+的移动影响碱激发矿渣基地聚物的泛碱行为。  相似文献   

6.
磷酸基地质聚合物可作为放射性废物固化材料,其抗侵蚀性直接影响固化体的稳定性。通过抗压强度测试、形貌观察、孔结构测定和离子浓度测试研究了磷酸基地质聚合物在去离子水、模拟地下水和质量分数3%Na2SO4溶液(简称为3%NS)中的抗侵蚀性能。结果表明:经介质侵蚀后,试样抗压强度有不同程度的损失,但仍在65 MPa以上,且28 d抗侵蚀系数分别为0. 92,0. 86和0. 84;侵蚀28 d,磷酸基地质聚合物表面出现不同程度的侵蚀痕迹,试样孔隙率(压汞法)有所增加,但均小于2%,其侵蚀作用的相对大小为:3%NS模拟地下水去离子水;各侵蚀周期下3种介质中磷酸基地质聚合物网络形成离子Al/Si/P中P溶出浓度最高,侵蚀介质对P的溶出有较大影响,P在去离子水中28 d累积溶出量分别为模拟地下水的47. 06%和3%NS的21. 77%。磷酸基地质聚合物具有较好的抗侵蚀性能。  相似文献   

7.
固定水灰比为0. 35,研究了氢氧化钾-水玻璃复合碱组分作用下碱矿渣水泥的凝结时间和抗压强度的变化规律。通过水化放热实验,研究了4%碱当量不同模数的复合碱组分作用下碱矿渣水泥的水化动力学过程。结果表明:以氢氧化钾-水玻璃复合作为碱组分的碱矿渣水泥,低水玻璃模数条件下,溶液中氢氧根离子浓度高,矿渣溶解速度快,水化放热增长迅速,凝结时间短,强度高;高模数条件下,溶液黏度高,氢氧根离子浓度低,凝结时间长,强度较低;对比而言,溶液模数为1. 5时,碱矿渣水泥的综合性能最佳。  相似文献   

8.
研究了新型放射性废物固化胶凝材料—富铝碱矿渣粘土矿物胶凝材料(RAAASCM)的组成及其浆体的某些性能。结果表明,热活化高岭土、新疆沸石、改性凹凸棒粘土是富铝碱矿渣粘土矿物胶凝材料较好的组成材料。该胶凝材料浆体具有高强、较低孔隙率、较少的有害孔、抗硫酸盐侵蚀和耐辐照性能好的特点。以此材料为基材的模拟放射性废物固化体Sr2+、Cs+的浸出率较低。  相似文献   

9.
固定水灰比为0.35,研究了氢氧化钾-水玻璃复合碱组分作用下碱矿渣水泥的凝结时间和抗压强度的变化规律。通过水化放热实验研究了4%碱当量不同模数的复合碱组分作用下碱矿渣水泥的水化动力学过程。结果表明:以氢氧化钾-水玻璃复合作为碱组分的碱矿渣水泥,低水玻璃模数条件下,溶液中氢氧根离子浓度高,矿渣溶解速度快,水化放热增长迅速,凝结时间短,强度高;高模数条件下,溶液粘度高,氢氧根离子浓度低,凝结时间长,强度较低;对比而言,溶液模数为1.5时,碱矿渣水泥的综合性能最佳。  相似文献   

10.
为寻找适合碱激发粉煤灰/矿渣复合体系的外加剂,研究了6种不同外加剂对碱激发粉煤灰/矿渣复合体系早期性能的影响。结果表明,无机外加剂氯化钡能够有效延长凝结时间,且同时能改善浆体流动性,使样品微观结构更加致密,抗压强度提高;葡萄糖酸钠、聚羧酸和木质素磺酸钠能稍微延长凝结时间和改善流动性,但改善效果不明显;引起剂十二烷基三甲基氯化铵,十二烷基聚氧乙烯醚能有效延长凝结时间,但浆体流动性变差,气泡引入使得抗压强度下降。碱激发粉煤灰/矿渣的反应产物主要为无定型态与少量铝托贝莫来石,掺入不同外加剂不会改变样品的晶相组成。  相似文献   

11.
碱磷渣胶凝材料硬化浆体及其与骨料界面结构   总被引:2,自引:0,他引:2       下载免费PDF全文
为研究碱磷渣胶凝材料的高强机理,用扫描电子显微镜研究了碱磷渣胶凝材料硬化浆体结构及其与骨料界面的结构,用压汞法研究了硬化浆体孔结构,并与硅酸盐水泥浆体的结构进行了对比.结果表明,与硅酸盐水泥浆体相比,碱磷渣胶凝材料浆体结构非常致密,孔隙率很低,孔径细小,浆体与骨料界面结构紧密,不存在如硅酸盐水泥浆体与骨料界面区常存在的Ca(OH)2定向生长及较非界面区疏松的情况.  相似文献   

12.
两种土壤聚合物碱激发剂的激发效果对比   总被引:1,自引:0,他引:1  
采用大液固比的方法对比研究了氢氧化钠和硅酸钠溶液对偏高岭石的激发作用,将反应到一定时间的浆体进行分离,对分离后的溶液和粉体分别进行分析.研究结果表明:(1)随反应时间的延长,偏高岭土与硅酸钠溶液反应分离后溶液中Si的聚合度增加,溶解的Al单体与溶液中的硅酸根离子聚合,分离后的粉体既有被碱侵蚀后的硅氧的碎片,也有铝单体与硅酸根离子聚合的胶团;(2)随反应时间的延长,偏高岭土与氢氧化钠溶液反应分离后溶液中的Si和Al含量不断增多,但硅和铝没有发生聚合,分离后粉体仅是偏高岭石在碱侵蚀下生成的碎片;(3)硅酸钠溶液中的硅酸根离子对土聚反应起到了重要的作用.  相似文献   

13.
研究了偏硅酸钠激发矿渣-粉煤灰的水化机理.通过显微形貌探究了在不同碱当量下胶凝材料的微观结构和水化产物的变化.结果表明,掺入偏硅酸钠可提高胶凝材料的强度,增加浆体中C-S-H含量.此外,掺入8%偏硅酸钠可使水化产物不断增加,浆体内部结构更加致密化,浆体内部微裂纹减少.  相似文献   

14.
采用分析纯试剂合成的C_3S和纳米SiO_2水化制备浆体,应用X-射线衍射仪(XRD)、场发射电镜(FESEM)和红外光谱分析(FTIR)分别表征了C_3S浆体的物相组成、微观形貌和分子结构。研究了浆体分散在不同浓度电解质溶液中的ζ电位。结果表明:C_3S浆体在去离子水中ζ电位均为负值,未掺纳米SiO_2浆体ζ电位约为-17 mV,掺15%纳米SiO_2浆体ζ电位约为-19 mV。在Ca~(2+)、Li~+和Cl~-溶液中,浆体表面吸附离子,改变了自身所带电荷,进而引起浆体ζ电位变化,K~+由扩散层进入吸附层改变ζ电位。  相似文献   

15.
以NaOH和KOH为激发剂,研究苛性碱掺量不同时,碱矿渣水泥砂浆(ASM)3、 7、 28、 90 d的抗压强度和抗折强度.采用压汞仪测试其净浆试件的孔结构;采用场发射扫描电子显微镜观察其砂浆试件的微观形貌.研究表明, ASM的抗压强度和抗折强度随着苛性碱掺量的增大,呈先上升后下降的变化规律.水胶比为0.4时, NaOH的最佳掺量(以Na_2O质量计)为矿渣质量的6%;KOH的最佳掺量(以K_2O质量计)为矿渣质量的4%.当激发剂掺量均为最佳掺量时, KOH作为激发剂的ASM的90 d龄期抗压强度和抗折强度分别比NaOH作为激发剂的ASM的90 d抗压强度和抗折强度高16.48%和12.65%.与采用NaOH作为激发剂的ASM相比,采用KOH作为激发剂的ASM的成本更低,性价比更高.  相似文献   

16.
为了研究激发剂种类对碱矿渣胶凝材料性能的影响规律,用高炉矿渣作为胶凝材料,氢氧化钠溶液、水玻璃溶液及碳酸钠溶液作为激发剂,在水胶比为0.3、碱当量为4%的条件下,研究3种激发剂对矿渣胶凝材料激发效果的影响,并采用微观测试手段分析了碱矿渣胶凝材料的微观形貌和水化产物.结果表明:不同的激发剂对胶凝材料的性能产生不同的影响,具体表现为碳酸钠作为激发剂,其凝结时间最长,且远远大于氢氧化钠和水玻璃作为激发剂制备的胶凝材料,但其制备的胶凝材料收缩率最小;水玻璃作为激发剂时,能够获得较高的强度,但其收缩率最大;而氢氧化钠作为激发剂,其制备的胶凝材料早期强度较高,但后期强度发展缓慢.微观分析显示,水玻璃和氢氧化钠作为激发剂时,水化产物主要为C-S-H凝胶和CaCO_3,而碳酸钠作为激发剂时,水化产物主要为CaCO_3.  相似文献   

17.
非α中低放废液碱激发胶凝材料固化体性能研究   总被引:1,自引:1,他引:1  
用碱矿渣胶凝材料对模拟中低放废液进行大体积浇注固化 ,废物包容量 (以硝酸盐计 )可达 1 3 .5 % ,水固比为 0 .3 4,水泥浆体具有良好的流动性和工作性 固化体 2 8d抗压强度为 1 0 .5MPa,孔隙率小于 1 0 % ,在去离子水中 ,固化体Cs 、Sr2 第 42天浸出率 (GB70 2 3 -86,2 5℃ )为2 .5× 1 0 -5、1 .3× 1 0 -6cm·d-1,整个浸出周期累积浸出百分数为 0 .7%和 0 .2 % ;MCC 1P法90℃、2 8dCs 、Sr2 浸出率为 3 .1× 1 0 -4、2 .2× 1 0 -5g·cm-2 ·d-1,浸出百分数为 3 .5 %、0 .2 % ;1 5 0℃时为 5 .6×1 0 -4、3 .0×1 0 -5g·cm-2 ·d-1,浸出百分数为 6.2 %、0 .3 % ,在盐卤溶液中浸出率相差不大 ,表明固化体能有效地持留Cs 、Sr2 ,其他性能均符合大体积浇注的要求  相似文献   

18.
放射性废物水泥固化体铯固化机理研究   总被引:2,自引:1,他引:2  
采用SEM、AAS等测试方法 ,研究不同沸石掺加量、不同成型方法的沸石基碱矿渣水泥放射性废物固化体Cs 浸出性能和固化体微观结构 ,推理出固化体中Cs 的 3种持留作用 :随矿渣水化进入固化体凝胶结构中 ;被沸石颗粒吸附且被水泥胶体包裹 ;存在于固化体孔隙中 其中固化体对Cs 的持留作用以沸石吸附为主 ,这是因为沸石表面的部分孔隙被水泥胶体所堵塞 ,增强了固化体持留Cs 的能力 ,据此建立了Cs 固化物理模型 ,探讨了Cs 固化机理 对影响固化体Cs 浸出率的 3个主要因素 :温度、沸石颗粒表面孔隙、固化体孔隙率进行了分析 ,进而合理解释了固化体中Cs 的浸出行为  相似文献   

19.
研究了富铝碱矿渣粘土矿物复合胶凝材料、碱矿渣水泥、硅酸盐水泥、矿渣硅酸盐水泥浆体对 90 Sr、137Cs的吸附作用。研究表明 :富铝碱矿渣粘土矿物复合胶凝材料中的粘土矿物材料的种类、掺量对吸附比有较大影响 ,该材料浆体对 90 Sr、137Cs的吸附性能优于碱矿渣水泥、硅酸盐水泥以及矿渣硅酸盐水泥  相似文献   

20.
为研究碱-盐复合激发大掺量矿渣充填胶凝材料的力学特性,设计不同石膏与熟料质量比的充填胶结体强度实验。利用XRD,SEM和TG-DSC等手段,研究净浆试样水化产物种类、微观形貌及质量损失率;基于室内实验研究成果,开展新型充填胶凝材料工业化应用研究。研究结果表明:当复合激发剂掺量为15%、石膏和熟料质量比为1:4,充填体3 d抗压强度最大为1.05 MPa;当复合激发剂掺量为20%、石膏和熟料质量比为3:2,充填体28 d抗压强度最大为8.61 MPa。石膏促使浆体中钙矾石(缩写为AFt)的生成,但掺量过大则影响早期胶凝物质的生成量,后期浆体中水化硅酸钙凝胶(缩写为C-S-H)的钙硅比由1.804降低到1.559,可保证结石体后期钙矾石的持续生成;3 d龄期净浆试样质量损失率从大到小依次为T7,T9和T6,28 d龄期净浆试样质量损失率依次为T9,T7和T6;综合可见,针对大掺量矿渣充填胶凝材料,合理的石膏掺量有助于提高充填体早期强度;但当石膏掺量较大或熟料掺量少时,胶结体早期强度低但有利于后期强度的提高。当熟料质量分数为12%,石膏为3%,矿渣为85%时,充填体3 d抗压强度为2.7 MPa,7 d抗压强度为5.1 MPa,28 d抗压强度达到10.6 MPa,满足金川矿山对充填体强度的要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号