首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
为了揭示螺旋通道横截面全流场信息,利用二维粒子图像测速仪(PIV)对高宽比为5∶7的矩形截面螺旋通道第二个螺距内的5个横截面流场进行了实验测量,获得了不同雷诺数下、不同横截面的二次流瞬态流场以及涡量场图像。实验结果表明:靠近螺旋通道外壁面下角处存在低速区,并产生了一个顺时针方向的旋涡,而螺旋通道内壁上角处同样存在低速区并产生了一个旋转方向相反的小旋涡,内壁上角和外壁下角的正负涡量绝对值较大;随着螺旋角的上升,横截面的二次流高速区速度分布由内侧逐步向外侧移动,使得外侧速度增加,其截面中心处二次流方向是自下向上流动;流体旋转一圈半后,螺旋流动达到稳定状态。此研究结果可为螺旋通道的强化换热设计提供一定的参考。  相似文献   

2.
纵向涡强化通道内换热的数值研究及机理分析   总被引:1,自引:0,他引:1  
用三维数值模拟方法研究了纵向涡发生器用于层流矩形通道的流动换热特征.研究了Re(为800~3 000)、涡发生器的冲角(分别为15°、30°、45°、60°、90°)、纵向涡发生器的形状对通道平均Nu和平均阻力系数的影响,并利用场协同原理进行了分析.结果发现:纵向涡发生器产生的二次流使全场速度和温度梯度之间的平均夹角减小,换热得到强化;纵向涡能改善包括涡发生器附近区域以及下游广阔区域的场协同性,而横向涡只可以改善涡发生器附近区域的场协同性,所以纵向涡可以强化整体换热,而横向涡只可以强化局部换热;对于光通道,协同角随Re增大而增大,但对于有纵向涡发生器的通道,协同角随着Re增大而减小.同时,在面积相同的条件下三角形小翼优于矩形小翼.  相似文献   

3.
在液力透平中,蜗壳的水力损失大小对透平的性能起着至关重要的影响.针对国内外液力透平的研究现状以及其效率较低等问题,对一单级单吸液力透平的蜗壳截面形状进行研究,借助ANSYS软件得出液力透平在不同蜗壳截面形状下的压力场、速度场、性能曲线和水力损失.研究发现:在选择的矩形截面、梯形截面和圆形截面中,透平蜗壳截面是梯形截面时的效率最高,适合本文研究的模型;在同一流量下,流体在圆形截面蜗壳内的水力损失最小,但是在叶轮中损失最大,因此蜗壳截面是圆形的透平效率不是很高.  相似文献   

4.
为探究并联弯曲细通道夹套内流体的流量分配、流场分布和阻力特性,用CFD软件对3种型号夹套内流体层流流动特性进行数值研究,分析不同细通道结构尺寸和流体进口流速对夹套内流体的流量分配、流场分布和流动阻力的影响。研究结果表明:细通道截面宽度越小(通道数越多),流量分配不均匀系数越小,流量分配越均匀;细通道内存在稳定的二次流,形式为旋向相反的二涡结构,且弯曲细通道内的流体会偏移靠近通道外壁;进出口压降随着通道截面宽度的减少(通道数增加)而增大。通道截面尺寸为1 mm×3 mm的夹套内流体流量分配均匀性最好,但其进出口压降最大。  相似文献   

5.
采用显微粒子测速技术(Micro-PIV)对圆形、椭圆形及菱形等不同截面形状错排微柱群绕流流动进行研究,得到了不同雷诺数(Re)下微柱群内部的速度场、流线等绕流流场信息,分析了Re与截面形状对绕流流场结构的影响规律。研究结果表明,微柱体绕流过程中漩涡脱落相对于常规尺度具有一定的滞后性;圆形微柱体背风区最早发生流动分离,菱形、椭圆形次之;随着Re的增大,微柱体尾流区出现涡结构,回流长度逐渐增大,在三种截面形状微柱群绕流流动中圆形截面微柱群的回流长度和回流区域最大。  相似文献   

6.
小流量工况下离心风机蜗壳内部的三维流动测量分析   总被引:6,自引:0,他引:6  
利用五孔探针对小流量工况下离心通风机大宽度矩形截面蜗壳内部的三维流动进行了详细的测量,给出了蜗壳螺旋通道部分的3-8个横截面内比较清晰的时均速度,静压和总压的分布图形,结果表明,在小流量工况下,蜗壳内部的二次旋涡在蜗舌处就开始形成,在一个横截面内,由开始有1个涡发展成2个,甚至3个涡,速度沿径向的分布与动量矩守恒规律经较明显的差别,特别是蜗舌附件区域的速度和压力分布与通常的分析有限大不同,蜗壳内的损失可初步归纳为4种;二次流损失,内泄漏损失,冲击损失和磨擦损失,在小流量工况下,二次流损失和内泄漏损失相对最为严重。  相似文献   

7.
考虑固液界面边界滑移条件,研究了具有矩形、椭圆形和三角形这3种不同截面形状的微通道热沉的传热传质性能。研究发现,随着滑移长度的增加,流体阻力逐渐减小,对流传热系数逐渐增大。具有相同滑移长度和截面形状的微通道热沉的流体阻力和对流传热系数均随水力直径的增加而减小。在微通道截面面积相同的条件下,三角形微通道热沉的对流传热性能最差;对于椭圆形和矩形微通道热沉,当水力直径小于某一临界值时,矩形传热效果更优,而大于这一临界值时,椭圆形传热效果更好。  相似文献   

8.
用数值计算的方法模拟了二维凸肋通道的流场和温度场,考察了不同肋高时充分发展湍流流动的热边界层中流体的温度梯度矢量与速度夹角对换热的影响,分析了二维加肋通道流的传热强化机理,提出了通过改变边界层来控制出纳感协同的方法,在湍流流场中进一步发展了场协同理论。  相似文献   

9.
射流纵向涡强化换热的数值模拟   总被引:1,自引:0,他引:1  
为研究射流引起的纵向涡对流动和换热性能的影响,采用数值方法模拟了三维矩形通道内有射流从底面进入时的定常、不可压层流对流换热,得到了纵向涡影响下的速度场和温度场以及沿流动方向局部Nusselt数的分布.以场协同原理为指导,分析了射流纵向涡强化换热的原因,并进一步研究了射流角对纵向涡的换热强化效果的影响.结果表明 纵向涡改善了通道内速度场和温度场的协同关系,强化了对流换热; 射流垂直底面入射时,纵向涡的换热强化效果较好.  相似文献   

10.
采用摄动方法研究了环形截面旋转螺旋管道内二次流动.结果表明由于内圆壁面的存在,旋转环形截面螺旋管道内的二次流动、轴向速度分布与圆截面情况相比存在明显的差别,截面可以出现1到8个二次涡,轴向速度最大值位置取决于F(F为科心力与离氏力之比),随着F的变化,二次流强度和流量比在F=-1左右取得最小值.  相似文献   

11.
离心式叶轮机械的叶轮通道内的流体流动受到旋转效应与曲率影响而产生强烈的二次流现象.二次流是叶轮通道内流动损失的一个原因,对离心叶轮机械的性能产生不利的影响.应用开源CFD软件OpenFOAM对旋转情况下的90°弯曲通道内的不可压缩流体流场进行三维黏性数值模拟.研究了弯曲通道在不同转速下哥氏力与离心力共同作用对主流速度、二次流及压力特性的影响规律.结果表明:与静止通道相比,旋转产生的哥氏力在弯曲管段形成不对称的二次流,使通道内涡结构变得复杂;甚至在较高转速下二次流方向发生反向.  相似文献   

12.
不同雷诺数下90°弯管内流动特性的数值研究   总被引:2,自引:0,他引:2  
运用FLUENT软件中的RNGk-ε模型对不同Re下圆形截面90°弯管内空气流动进行了模拟,分析了管内压力分布、二次流动和壁面上压力系数的变化,研究了Re不同时对壁面压力系数的影响.发现在气流进入弯管段后,流场由于流体惯性和分子黏性的相互作用,各个截面上出现了对称的二次流涡对.随Re增大,流体对于管道壁面的压力增大,管内压力损失也在增大.管道壁面上的压力系数随Re的不同差别不大,Re越大,压力系数越小,并且管道外壁面变化比内壁面更加明显.湍流时压力系数沿程变化比层流明显很多,曲率的影响也要强于层流.  相似文献   

13.
针对一种高负荷涡轮叶栅,利用低速矩形叶栅风洞实验研究叶顶间隙泄漏流动。研究了不同叶顶间隙和不同来流冲角情况下,涡轮叶栅的流场结构和气动性能。研究工况包括无间隙, 0.5%、1.0%、1.5%叶高间隙和±10°、±5°、0°冲角。通过五孔探针获得矩形叶栅出口截面上总压、气流角以及速度分布;通过叶片表面开设的静压孔,获得叶片中部以及靠近叶顶截面的叶片表面静压分布。实验结果表明:叶顶间隙的存在增强了叶栅顶部的二次流动,恶化了上半叶展的流动状况,涡系结构发生了改变。随着叶顶间隙的增大,叶栅总压损失增加,气流偏转不足/过偏现象加剧;随着冲角的增大叶栅总压损失增加。  相似文献   

14.
矩形通道内具有Rayleigh-Benard对流的湍流换热大涡模拟   总被引:1,自引:0,他引:1  
基于动态Smagorinsky涡黏模型对矩形通道截面内具有Rayleigh-Benard对流的湍流充分流动和换热问题进行了大涡模拟研究,分析了浮升力对管道截面的平均速度、温度分布以及雷诺应力的影响.湍流雷诺数为400,格拉晓夫数从105变化到107.研究结果表明:随着格拉晓夫数的增大,浮升力增强,通道内平均速度减小;亚格子黏性系数明显增大,湍流强度增强,换热也明显增强;由于浮升力的存在,在高温壁面附近,主流湍动能减小,展向湍流强度大大增强;初始条件对平均速度及温度的分布有一定的影响,但对平均的阻力系数及换热系数没有影响.  相似文献   

15.
采用Micro-PIV实验系统和压差测试系统,研究了含有单个微圆柱的通道内去离子水在10相似文献   

16.
为提高油浸式变压器用片式散热器的综合换热性能,在散热器空气侧安装新型六边形翼涡流发生器,通过数值模拟研究涡流发生器的纵向间距、攻角以及形状对片式散热器换热性能的影响,并运用场协同原理从速度场和温度场相协同的角度阐述纵向涡强化换热的机理。结果表明:同等面积下六边形翼的阻力因子较矩形翼有所增大,但其努塞尔数的提高更加显著;当六边形翼C涡流发生器布置间距为60 mm、攻角45°时,速度矢量与热流矢量间的夹角最小,速度场和温度梯度场协同性最好,散热器综合换热性能最佳,比普通片式散热器的综合换热性能提高26.52%。  相似文献   

17.
用Lattice Boltzmann方法计算矩形柱的绕流问题   总被引:1,自引:0,他引:1  
采用二维9速度Lattice Boltzmann模型, 数值模拟流体流过矩形截面柱体的绕流问题. 在边界处, 采用二阶精度的插值边界处理方法, 计算了流动的Strouhal数及柱体受到的升力和阻力系数, 给出了流场的流线和等涡线图. 使来流方向与矩形柱的长边方向平行, 计算结果表明, 改变矩形的长/宽比, 流场的Strouhal数随长/宽比呈线性变化.  相似文献   

18.
不同截面微通道中流动阻力特性   总被引:1,自引:0,他引:1  
实验研究了微通道内去离子水的流动阻力特性,微通道当量直径范围De=0.210~1.069mm,雷诺数范围Re=102~104,截面形状分为矩形、半圆形及三角形.通过测量微通道沿程压降及出、入口局部压降随流量变化关系,获得了沿程阻力系数及局部阻力系数.结果表明:当截面形状相同时,摩擦阻力系数随着当量直径的减小而降低;当量...  相似文献   

19.
本文以空气为介质(Pr=0.701),通过数值模拟的方法在Re=200~1400的范围内,对带有纵向涡发生器的矩形通道的换热及阻力损失进行了模拟分析,并比较了矩形通道、布置一排纵向涡发生器的通道、布置二排纵向涡发生器的通道内的传热与阻力。计算结果表明,纵向涡能有效的起到强化换热的效果,二排涡的效果要优于单排,在较小Re下,涡产生器引入的阻力损失要大于带来的换热强化效果。  相似文献   

20.
针对一种高负荷涡轮叶栅,利用低速矩形叶栅风洞实验研究叶顶间隙泄漏流动.研究了不同叶顶间隙和不同来流冲角情况下,涡轮叶栅的流场结构和气动性能.研究工况包括无间隙,0.5%、1.0%、1.5%叶高间隙和±10°、±5°、0°冲角.通过五孔探针获得矩形叶栅出口截面上总压、气流角以及速度分布;通过叶片表面开设的静压孔,获得叶片中部以及靠近叶顶截面的叶片表面静压分布.实验结果表明:叶顶间隙的存在增强了叶栅顶部的二次流动,恶化了上半叶展的流动状况,涡系结构发生了改变.随着叶顶间隙的增大,叶栅总压损失增加,气流偏转不足/过偏现象加剧;随着冲角的增大叶栅总压损失增加.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号