首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 222 毫秒
1.
采用化工流程模拟软件,对三氯氢硅精馏的双塔流程进行了模拟计算,在产品质量达到工艺要求的基础上,对精馏过程各塔的主要参数进行了分析优化。计算得到预分离塔的最适宜进料板位置、回流比、塔顶采出量分别为6、18、250kg/h,三氯氢硅塔的最适宜进料板位置、回流比、塔顶采出量分别为12、5、2453kg/h,并且最适宜的进料温度范围为25~35℃。将优化后的参数应用到实际设计和生产中,三氯氢硅塔塔顶产品各组分含量的模拟结果与工业数据基本一致,三氯氢硅纯度大于0.999。  相似文献   

2.
利用化工模拟软件Aspen Plus 7.3对萃取精馏分离醋酸乙烯-甲醇共沸物流程进行模拟和优化,对塔板数、回流比、进料位置、萃取剂流率和温度等操作参数进行灵敏度分析。模拟优化得到萃取精馏塔的设计参数为:塔板数31,回流比0.27,萃取剂进料位置第2块塔板,萃取剂流率21932kg/h,混合物进料位置第22块塔板,塔顶采出量18477kg/h。溶剂回收塔的设计参数为:塔板数24,回流比1.80,进料位置第19块塔板,塔顶采出量12626kg/h。在此基础上,对优化前后能耗进行对比,节省循环水、蒸汽和萃取剂用量分别为285。9万t/a、3.2万t/a和4.4万t/a,每年共带来经济效  相似文献   

3.
针对某工厂醋酸乙烯精制工艺TQ-203塔存在处理量不能满足生产要求、能耗较高的问题,运用流程模拟软件Aspen Plus对TQ-203塔进行模拟,选取最接近生产实际的NRTL模型,确定了理论板数为31块。由单因素分析给出了较优的参数范围,利用正交实验方法得到的最佳参数组合为:进料位置为第5块理论板,回流比为2.30,侧线采出位置为第29块理论板。根据上述结果提出对TQ-203塔更换塔板、调整进料及侧线采出位置的改进措施,能够满足该塔对处理量及产品纯度的生产要求;提出了侧线采出预热进料和采用第五精馏塔侧线采出做本塔塔釜热源的节能措施,该措施能节省水蒸汽(0.4MPa)12.56t/h、循环冷却水434.54t/h,可取得经济效益1495万元/a。  相似文献   

4.
采用化工流程模拟软件,对聚乙烯醇生产中聚合工段聚合一塔进行了模拟计算。通过稳态灵敏度分析,优化了聚合一塔的最优操作点,即进料位置40块塔板,回流比0.7,馏出量6650 kg/h。动态研究表明,进料量、进料组成和回流量扰动均对一塔操作产生较大影响,其中,塔顶流量及组成动态响应速度缓慢,波动超过7 h,塔釜产品醋酸乙烯质量分数波动在扰动2~3 h时存在峰值;对于以塔底产品为主的聚合一塔,不能通过增加塔顶回流量来提高分离效果;串级控制通过改变吹入甲醇量可以快速有效控制塔釜产品醋酸乙烯含量。  相似文献   

5.
应用ECSS化工之星模拟软件对甲醇精馏过程中的常压精馏塔进行模拟。分别讨论了进料位置、操作回流比和侧线采出位置等参数对塔釜废水中甲醇含量、能耗和塔顶精甲醇纯度的影响,同时提出了常压精馏塔优化操作的方案,模拟计算结果符合工业实际过程。  相似文献   

6.
为增大关键组分的相对挥发度以有利于分离,用苯作为溶剂对流量为78.788 88 kmol/h的丙酮-氯仿混合物进行萃取精馏过程的模拟计算。精馏流程采用两塔结构,即萃取精馏塔和溶剂回收塔,前者塔顶馏出产物为丙酮,塔底产物为氯仿、苯和微量丙酮的混合物;后者塔顶馏出产物为氯仿,塔底为溶剂苯和少量氯仿,此塔底产物作为回流与补充溶剂合并返回萃取精馏塔。萃取精馏塔总共65块理论板(包括塔顶全凝器和塔底再沸器),补充溶剂(0.410 76kmol/h)和新鲜进料合并从萃取塔第30块理论板加入(从上往下数),回流比为10,塔顶产物42.84kmol/h;溶剂回收塔共有70块理论板(包括塔顶全凝器和塔底再沸器),进料位置为第30块,回流比为15,塔顶产物与进料流量比设为0.11。模拟计算结果收敛,结果萃取精馏塔顶产物中丙酮纯度为99.95%,溶剂回收塔顶氯仿含量达到97.87%。  相似文献   

7.
当混合物组分之间的挥发性相近并且形成非理想溶液,组分间的相对挥发度可能小于1.1,采用常规精馏分离就可能不经济,若组分间形成恒沸物,仅采用常规精馏达不能实现相应组分的锐分离,这种情况可考虑采用强化精馏来实现相应组分之间的分离。用水作为溶剂对流量为40mol/s的丙酮-甲醇(摩尔比为3∶1)混合物流股进行萃取精馏过程合成设计与模拟计算。分离流程采用两塔结构,即萃取精馏塔和溶剂回收塔,前者塔顶馏出产物为丙酮,塔底产物为甲醇、水和微量丙酮的混合物;后者塔顶馏出产物为甲醇,塔底为溶剂水,此塔底产物作为回流与补充溶剂合并返回萃取精馏塔。经过试探法合成,萃取精馏塔采用30块理论板(包括塔顶全凝器和塔底再沸器),溶剂进料板为第7块(从上往下数),丙酮-甲醇混合物流股进料板为第13块,回流比为4,塔顶产物31.226mol/s,丙酮纯度95.5%,塔底产物69mol/s;溶剂回收塔为简单精馏塔,采用16块理论板(包括塔顶全凝器和塔底再沸器),进料位置为第12块,回流比为3,塔顶产物流量为10 mol/s,甲醇含量99.8%,塔底产物流量59mol/s,水含量达到99.9%,补充溶剂约为1 mol/s,实际补充量可根据操作情况适当变化。  相似文献   

8.
针对CO气相催化偶联制草酸二甲酯(DMO)-草酸酯加氢合成乙二醇(EG)的生产新工艺,应用Aspen Plus软件,在物性常数估算、模型建立的基础上,考察理论板数、进料板位置和回流比等对DMO加氢工段主要工艺单元装置EG精制塔T-204的分离效果的影响,并一步进行了加氢工段全流程模拟.结果表明,T-204优化后的总理论板数、进料板位置、塔顶蒸发速率和回流比分别为25、7、40.95 kmol/h和3.1.全流程模拟显示,15 183.36 kmol/h的H2、189.79 kmol/h的DMO可生产9 980.27 kg/h EG,同时反应放出的热量得以有效利用.  相似文献   

9.
运用Aspen plus流程模拟软件,对单塔加压汽提塔进行模拟,模拟分析了热冷进料比、塔顶采出量、侧线抽出量与热进料进塔温度对净化水氨含量的影响,确定了汽提塔优化后的操作参数,为汽提塔改造提供理论依据。  相似文献   

10.
根据三氟化硼-苯甲醚化学交换反应精馏体系,对硼同位素的生产过程进行了实验研究,考察了回流比的调节方式和裂解塔、络合塔产品回收率对分离效果的影响.结果表明:通过改变液相来改变回流比时,随着回流比的增加,塔顶^10B丰度逐渐减小,塔底^10B丰度逐渐增大;通过改变气相采出来改变回流比时,随着回流比的增加,塔顶、塔底^10B丰度均增加;随着产品采出率的增加,塔顶和塔底^10B丰度均降低.  相似文献   

11.
首先运用Aspen Plus软件对醋酸乙烯精馏四塔进行稳态优化,优化后的操作条件为进料板位置31块板、回流比7.22、塔顶馏出量1007 kg/h。根据实际生产经验及Shinskey精馏控制三项准则,提出了单板温度控制方案(CS1)与双板温度控制方案(CS2)。动态模拟研究结果表明CS1可以保证精馏塔的稳定操作,CS2在产品质量控制上更胜一筹,但两者均不能克服进料组分的扰动。因此本文提出了一种新的控制结构:组分-温度控制结构(CS3),动态模拟结果显示,添加进料组分扰动后,塔顶产品浓度仍可满足质量要求。  相似文献   

12.
基于Aspen Plus仿真,研究了一个双酚A脱水精馏塔装置的优化操作问题。采用RadFrac模块进行全流程模拟,选择UNIQUAC热力学模型,对以苯酚和丙酮为原料生产双酚A的脱水精馏过程进行模拟计算。分析了进料位置和回流比对分离纯度和年总操作费用的影响,在进料位置和回流比同时变化的情况下,利用Matlab寻优,得到了脱水精馏塔的最佳进料位置及回流比。仿真结果显示,优化后的塔顶水质量分数比优化前有了明显提高,年总操作费用大大降低。该优化结果对工业流程设计和生产操作具有指导意义。  相似文献   

13.
建立了醋酸生产分离过程的数学模型,对脱水塔的操作工况进行了模拟分析。结果表明,甲酸富集区的形状和位置与全塔的物料分割比例,回流比及进料和侧线位置有关;通过增大侧线抽出量,可降低富集区甲酸和氯离子的浓度,减缓设备的腐蚀速率,延长设备使用寿命。  相似文献   

14.
在丙酸甲酯和正丙醇酯交换法生产丙酸丙酯的过程中,反应精馏塔的塔顶会产生大量的丙酸甲酯和甲醇共沸物,可通过分离的手段使其中的丙酸甲酯循环使用。提出耦合变压精馏工艺,选用非随机(局部)双液体模型方程(NRTL)热力学模型,利用Aspen Plus V10.0对工艺流程进行模拟研究。以塔釜产品纯度为约束变量,高压塔塔釜能耗最低为优化目标,分别对理论板数、进料位置、回流比等参数进行优化,优化后的两塔最优工艺参数如下:常压塔理论板数31,回流比2.5,进料位置第9块塔板,循环物料进料位置第14块塔板;高压塔操作压力500 kPa,理论板数21,进料位置第13块塔板,回流比3.3。分离效果可达到甲醇质量分数99.95%,丙酸甲酯质量分数99.94%。与传统变压精馏相比,本文的耦合变压精馏可节省能耗48.8%。  相似文献   

15.
针对CO气相催化偶联制草酸二甲酯(DMO)-草酸酯加氢合成乙二醇(EG)的生产新工艺,应用Aspen Plus软件,在物性常数估算、模型建立的基础上,考察进料板位置、回流比等对CO制DMO工段主要工艺单元装置甲醇吸收精馏塔T-101的产品分布及能耗的影响,并进一步进行了羰化全流程模拟。结果表明,T-101的气体进料板数、摩尔回流比和吸收剂甲醇用量的最佳值分别为10、0.2和6 000 kg/h。全流程模拟显示,888 kmol/h的CO、100.65 kmol/h的O2和841.07 kmol/h的CH3OH可生产189.79 kmol/h的草酸二甲酯,同时反应放出的热量得以有效利用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号