首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
本文给出一类空间曲线的填充方法.给定有序点列(x_1,y_l,z_1,),(x_2,y_2,z_2,),…,(x_n,y_n,z_n)和一个C~2-类函数要在任意相邻的两点之问填充一个空间曲线 F,假设 F 在 XZ 平面 XY 平面和 YZ 平面上的投影分别为:z=g(z),y=f(x),z=h(y)和要求这些函数满足下列条件:1 g'(x)>0,g'(x)>02 h'(y)<0,h'(y)<03 f'(x)<0,f'(x)<04 ζ'(x)>0,ζ'(x)>05 这 n-1个曲线段在连接点是两阶连续的,这是一类在数学放样中很常用的空间曲线。  相似文献   

2.
<正> 一般的《高等代数》书都是采用若干步的线性替换化为标准形的.(当然可通过合同的初等变换求出上式中的n阶可逆矩阵C来)先将f(x_1x_2,…,x_n)化为d_1y_1~2+g(y_2,…,yn)(g(y_2y_3,…yn)是P上的n-1元二次型)再对g(y_2,…,yn)进行变换等等.而当a_(11)=a_(22)=…=a_(nn)=0时,往往需要两步线性替换才能将n元的情形化为n-1元的情形.本文介绍一种简单易记的方法.只需经过一次线性替换就可将f(x_1,x_2…,x_n)化为d_1y_1~2+d_2y_2~2+g(y_3,…,yn)的形式,即有  相似文献   

3.
用Leray-Schauder不动点定理,讨论完全n阶边值问题:{-u~((n))(t)=f(t,u(t),u′(t),…,u~((n-1))(t)), t∈[0,1],u~((i))(0)=0, i=0,1,2,…,n-2,u~((n-1))(1)=0烅烄烆解的存在性,其中f:[0,1]×R~n→R为连续函数.在一个允许f(t,x_0,x_1,…,x_(n-1))关于x_i(i=0,1,2,…,n-1)超线性增长的不等式条件及f(t,x_0,x_1,…,x_(n-1))关于x_(n-1)满足Nagumo型增长的条件下,得到了该问题解的存在性.  相似文献   

4.
设(X,Y)为d×1随机向量,f(x,y)为其概率密度函数,(X_i,Y_i) i=1,2,…,n为抽自f的i. i. d. 样本,m(x)(?)E(Y|X=x)称Y对X的回归函数。Watson (1964),Nagaraya (1964)提出用m_n(x)=sum from i=1 to n (Y_iK(?))/sum from i=1 to n (K((x-X_i)/h_n))估计m(x),其中K(x)为R~d上的概率密度,h_n>0,h_n→0(n→∞),这种估计称核估计。引入记号:ω(x)(?) integral from R~1 to ∞(yf(x,y)dy),g(x)(?) integral from R~1 to ∞(f(x,y)dy),又ω_n(x)(?)1/(nh_n~d) sum from i=1 to n (Y_iK)((x-X_i)/h_n),g_n(x)(?)1/(nh_n~d) sum from i=1 to n (K((x-X_i)/h_n)),它们分别是ω(x)和g(x)的估计。则m(x)=ω(x)/g(x),m_n(x)=ω_n(x)/g_n(x)(约定0/0=0)。当d=1时,E. Schuster和S. Yakowitz(1979)证明了在一组条件下,存在常数c>0,他对(?)ε>0,当n充分大时,其中,  相似文献   

5.
将分别建立当λ→0和λ→+∞时,分数次积分算子的弱型极限行为.具体来说:对于任意的f∈L1(Rn),有下面2个等式成立,limλ→0λ|{x∈R~n:|I_αf|λ}|~((n-α)/n)=v_n~((n-α)/n)‖f‖1,limλ→+∞λ|{x∈R~n:|I_αf|λ}|~((n-α)/n)=0.  相似文献   

6.
令f(n)为任二环均有不同长度的恰有n个顶点的图的最多边数。1975年,Erdos提出了确定f(n)的问题(见〔1〕)。1986年,y,shi证明了f(n)≥n+〔((8n-23)~(1/2)+1)/2〕(n≥3)且当3≤n≤17时,等号成立。于是猜想:对任何整数n≥3,有f(n)=n+〔(8n-23)~(1/2)+1)/2〕本文证明了,当n=1+1/2m(m-1)(m≥3)时,本猜想成立。  相似文献   

7.
<正> 一、前言在很多书中一向是使用偏微分来求回归直线和回归平面。本文不用偏微分而用正射影来求回归直线和回归平面。另外,将数组(x_1,x_2,…x_n), (y_1,y_2,…y_n),(z_1,z_2,…z_n)分别取作变量 x,y,z 时,作为 n 微空间的元素进行回归分析,弄清奇妙的几何性质,利用此性质,由简单的向量,矩阵和行列式的知识就可进行回归分析。本文就这些问题作一介绍。  相似文献   

8.
对于n元连续周期函数及其共轭函数,由Γ_R(f)(x)=∫_(|y|>1)f(x-y/R)|y|~(-n-1)dy(R>0)定义的算子Γ_R在全测度集上的逼近性态被讨论且所得的结果被用来得到对于用S_R(f)(x)=sum from|m|相似文献   

9.
对称变换是正交变换中基本的也是重要的一种变换,本文就空间曲面的对称变换谈一些粗浅的认识。 一、曲面关于点的对称变换 定义(1.1) 设空间中有点M(x_0,y_o,z_0)和 p(x,y,z),P′(x′,y′,z′),若它们满足 (x+x′)/2=x_0,(y+y′)/2=y_0,(z+z′)/2=z_0  相似文献   

10.
用一个单调函数ω(t) 为中介,利用Szasz-Durrmeyer算子导数的性质以及该算子的可换性和光滑模ωφλ(f,t)为特点,得到以下点态逼近逆定理对于f∈C[0,+∞),0≤λ≤1,φ(x)=x,δn(x)=φ(x)+1/n, 若|f(x)-Sn(f,x)|≤Mω(n-1/2δ1-λn(x)),其中ω(t)≥0, ω(ut)≤C(u2+1)ω(t),则对任意t>0,有ω2φλ(f,t)≤Ct2∑0<n≤t-1(n+1)ω(n-1)+Ct2‖f‖,ω1(f,t)≤Ct∑0<n≤t-1ω(n-(2-λ)/(2))+Ct‖f‖.此结果推广了有关ωφ(f,t)和ω(f,t)的结果.  相似文献   

11.
本文研究以Jacobi多项式的J_n(x)=sin(2n+1)/2θ/sinθ/2(x=cosθ,0≤θ≤π)的零点为基点的Hermite-Fejer插值过程H_(2n-1)(f,x).对于Lipα(0<α<1)类中函数,改进了[1]的结果:得到了H_(2n-1)(f,x)逼近有界变差函数的阶估计. 设函数f(x)∈C〔-1,1〕,x=cosθ(0≤θ≤π),J_n(x)是n阶Jacobi多项式,x_k=x_k~(n)=cosθk=cos(2kπ)/(2n+1)(k=1,2,…,n)是J_n(x)的零点,以{x_1,x_2,…,x_n}为基点的Hermite-Fejer插值算子是(见文〔1〕(4))  相似文献   

12.
设x=(x_1,x_2,…,x_n)为R~n中有界区域G内的点,G的边界(?)G:x_i=x_i(S_1,…,S_(n-1)),i=1,…,n为光滑闭曲面,其外法线方向为(?),我们考虑泛函 J_n=integral from t_1 to t_2 integral from G(F(x,t,u,u_x,u_t)dxdt+integral from t_1 to t_2 integral from (?)G(f(s,t,u,u_s)dsdt (1)的局部极值问题,这里u=u(x,t),而u_x=(u_(x_1)…,u_(x_n)),u_s=(u_(s_1),…,u_(s_(n-1))),u~(s_j)=sum from i=1 to n ((?)u/(?)x_i(?)x_i/(?)s_j,j=1,…,n-1,又记区域V=(?)×[t_1,t_2],并设函数u(x,t)∈c~2(V),F和f分别在V和(?)G×[t_1,t_2]上二次连续可微。  相似文献   

13.
偶映射定理     
受奇映射定理的启发,本文证明了连续偶映射的Brouwer度为偶数,即偶映射定理.(H)设D(?)R~n是有界对称含0的开集,f:D→R~n是连续偶映射(f(x)=f(-X),(?)X∈D)使O(?)f((?)D)有如下主要结果:1~0如假设(H)满足,则deg(f,D,0)是偶数.2~0如假设(H)满足,R~n的维数n为奇数且f(x)+(λ-1)x≠0,(?)x∈D和λ>1,则f在(?)D上必有零点.3~0如假设(H)满足但R~n的维数n为奇数,则存在y∈(?)D和λ>0(或λ<0)使f(y)=λy.我们进一步按上述内容对全偶连续映时进行了讨论.映射f:D→R~n是全偶的,只要f((-1)~(a1)x_1,…(-1)~(an)x_n)=f(x_1,…x_n),(?)(a_1,…a_n)∈δ_n(0,1),这里δ_n(0,1)={(a_1,…,a_n)|a_i=0或1,(?)i∈{1,2,…,n}}.  相似文献   

14.
<正> 10前言本文的目的是,在不利用通常的著名不等式的前提下,建立与单调性有关的两个不等式。作为特例,可以导出不等式及其它相关的不等式. 下面均考虑n个正数xi 组成的集(x)=(x_1,…,x_n)。如果0相似文献   

15.
Let F_q stand for the finite field of odd characteristic p with q elements(q=p~n,n∈N)and F_q~* denote the set of all the nonzero elements of F_q.In this paper,by using the augmented degree matrix and the result given by Cao,we obtain a formula for the number of rational points of the following equation over F_q:f(x _1,x _2,...,x _n)=(a_1 x_1 x_2~d+a_2 x_2 x_3~d...+a_(n-1)x_(n-1)x_n~d+a_n x_n x_1~d)~λ-bx_1~(d1)x_2~d2...x_n~(dn),with a_i,b∈F_q~*,n≥2,λ0 being positive integers,and d,d_i being nonnegative integers for 1≤i n.This technique can be applied to the polynomials of the form h_1~λ=h_2 with λ being positive integer and h_1,h_2∈F_q[x _1,x _2,...,x _n].It extends the results of the Markoff-Hurwitz-type equations.  相似文献   

16.
在平面上,任给二次曲线Γ:F(x,y)≡a_(11)x~2+2a_(12)xy+a_(22)y~2+2a_(12)x+2a_(23)y+a_(33)=0 (1)和一点 M_0(x_0,y_0),则过 M_0的直线 l 的方程可写为x=x_0+Xt,y=y_0+Yt.X:Y 是 l 的方向,-∞相似文献   

17.
本文的主要结果是下列定理,它是压缩映象原理和裴鹿成的定理的推广. 定理设f是把完备距离空间X的元素变为X的元素的连续变换,从x_0出发,取x_(n 1)=f(x_n),设序列{x_n}满足σ(Sk,N_(k 1))≤ασ(S_(k-1),N_k),k=1, 2,3……其中σ(n,m)=max σ[x_(n j),x_(n j 1)], o≤j相似文献   

18.
设1≥x_(1n)>x_(2n)>…>x_(nn)≥-1。我们考虑如下的三角矩阵: 设f(x)是定义在区间[-1,1]上的连续函数,那末存在次数不超过n-1次的多项式P_(n-1)(x)使P_(n-1)(x_(vn))=f(x_(vn)),我们记这样的P_(n-1)(x)为L_n(f,A),乃是f(x)关于A的n次拉葛朗日内插多项式。写  相似文献   

19.
设X,Y为(B)型空间,研究非线性完全连续作用于X带参数y的方程Ф_yx=x—F(x,y)=0设Ф_y0=0(有时φ_y0=0)。若F对x在x=0可微,则Ф_yx=x-F′(0,y)x T(x,y)=0 表Ω为正则值集合,Π为奇异值集合,则i[Ф_y,0]当y在Ω的连通区域D时为常数。设A=F′(0,y_0),y_0∈ΠX_1真为相应于固有值1的固有子空间,由完全连续线性算子理论,有X=X_1 X_2,相应一对投影P_1P_2且存在有逆线性算子R使R(I—A)x=x_2。本文得到如下结论,若y_0∈Πh=y-y_0。足够小F′(0,y)=A—S(h)。 y∈Ω充要条件为Ю_y=P_1RS(h)P_1—P_1RS(h)P_2[P_2 P_2RS(h)P_2]~(-1)P_2RS(h)P_1在X_1中有逆,此时i[Ф_y,0]=i[R,0]i[Ю_y,0]_(X_1)。 x=0是Ф_(y_0)x的孤立零点之充要条件为x_1=0是L_(x_1)=P_1RT(x_1 f(x_1,y_0)y_0)=0的孤立零点,其中x_2=f(x_1,y_0)是P_2x P_2RT(x_1 x_2,y_0)之解。此时i[Ф_(y_0),0]=i[R,0]i[L,0]X_1。最后,我们应用上述结果到非线性方程的分枝解问題。  相似文献   

20.
论拟凸函数的相邻系数   总被引:5,自引:1,他引:4  
1.设函数f_k(z)=z|+∑_(n-1)~∞a_(n+1)~((k)z~(k_n+1)在单位圆|z|<1内解析,并存在一函数g(z)=b_1z+b_2z~2+…(|b_1|=1)在|z|<1内解析,且g(z)/b_1∈S~*,使Re{zf′(z)/g(z)}>0。则设f(z)为拟凸函数,记其族为S_c~((k))·熟知S_c~((k))S·设f_k(z)=z+a_(n+1)~((k))z~(kn+1)∈S。要找出最好的α使下面的不等式成立:  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号