首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
工业微生物育种技术研究进展   总被引:10,自引:0,他引:10  
工业微生物育种是运用遗传学原理和技术对某种具有特定生产目的的菌株进行政造,去除不良性质,增加有益新性状,以提高产品的产量和质量的一种育种方法.工业微生物的育种技术已从常规的突变和筛选技术发展到基因诱变、基因重组和基因工程等,育种技术的不断成熟,大大提高了微生物的育种效果.  相似文献   

2.
DNA transformation leads to pilin antigenic variation in Neisseria gonorrhoeae   总被引:48,自引:0,他引:48  
H S Seifert  R S Ajioka  C Marchal  P F Sparling  M So 《Nature》1988,336(6197):392-395
Many pathogenic bacteria express pili (fimbriae) on their cell surfaces. These structures mediate binding of bacteria to host tissues, and may also be involved in other aspects of pathogenesis. Neisseria gonorrhoeae pili are mainly composed of a single protein, pilin, whose expression is controlled at chromosomal expression loci (pilE). An intact pilin gene and promoter sequences are only found at pilE. Strain MS11 contains two expression sites (pilE1 and pilE2), whereas several of its derivatives and other clinical isolates contain only one. Silent pilin loci (pilS1-pilS7) contain truncated variant pilin genes lacking the promoter and conserved pilin gene sequences. Pilin antigenic variation in N. gonorrhoeae occurs by DNA recombination between one of he silent partial variant gene segments in pilS and an expressed pilin gene in pilE. The recombination reactions are nonreciprocal, and therefore the mechanism has been classified as gene conversion. We report that much of the recombination between pilin loci actually occurs after transformation of living piliated cells by DNA liberated from lysed cells within a population. This constitutes a new molecular mechanism for an antigenic variation system, as well as the first specific function for a DNA transformation system.  相似文献   

3.
4.
New and highly effective strategies for directed enzyme evolution in vitro have been developed in the protein engineering field. They allow engineering all kinds of enzymes in vitro so that new ones with novel functions and features can be obtained by the methods of error-prone PCR, DNA shuffling (exon shuffling), hybrid enzyme, random-priming in vitro recombination (RPR), stagger extension process (StEP), random-directed mutagenesis in vitro, etc., even with little knowlodge of spatial structure and catalytic mechanism of enzymes in advance. The process that would take millions of years in nature can in principle be accomplished in the test within several years.  相似文献   

5.
Meiotic recombinations contribute to genetic diversity by yielding new combinations of alleles. Recently, high-resolution recombination maps were inferred from high-density single-nucleotide polymorphism (SNP) data using linkage disequilibrium (LD) patterns that capture historical recombination events. The use of these maps has been demonstrated by the identification of recombination hotspots and associated motifs, and the discovery that the PRDM9 gene affects the proportion of recombinations occurring at hotspots. However, these maps provide no information about individual or sex differences. Moreover, locus-specific demographic factors like natural selection can bias LD-based estimates of recombination rate. Existing genetic maps based on family data avoid these shortcomings, but their resolution is limited by relatively few meioses and a low density of markers. Here we used genome-wide SNP data from 15,257 parent-offspring pairs to construct the first recombination maps based on directly observed recombinations with a resolution that is effective down to 10 kilobases (kb). Comparing male and female maps reveals that about 15% of hotspots in one sex are specific to that sex. Although male recombinations result in more shuffling of exons within genes, female recombinations generate more new combinations of nearby genes. We discover novel associations between recombination characteristics of individuals and variants in the PRDM9 gene and we identify new recombination hotspots. Comparisons of our maps with two LD-based maps inferred from data of HapMap populations of Utah residents with ancestry from northern and western Europe (CEU) and Yoruba in Ibadan, Nigeria (YRI) reveal population differences previously masked by noise and map differences at regions previously described as targets of natural selection.  相似文献   

6.
外显子捕获联合高通量测序技术在检测新的致病基因,特别是罕见的基因变异时,表现出很高的检测效率.但在具体使用过程中,探针易出现非特异性杂交,设计探针时需考虑Tm值均一性、所需初始样品量较大等问题.RecA是原核生物同源重组的中心分子,参与DNA损伤的重组修复.通过在体外模拟RecA蛋白在原核生物体内重组寻找同源序列的途径,用以捕获目标DNA分子,以期提高外显子捕获过程中的探针杂交效率和特异性.根据RecA在体内同源重组中的作用模式,先将基因组染色质片段化,再纯化DNA,设计生物素标记的特异性探针,在RecA蛋白的介导下以捕获基因组中的目的同源片段.结果显示:设计的和目标片段互补的探针高效而特异地捕获了目标DNA片段,ATP和水能够破坏RecA介导形成的三链复合体的稳定性,可以作为很好的杂交后洗脱试剂,而且水直接作为洗脱试剂可以提高洗脱目的 DNA片段的效率和纯度.  相似文献   

7.
DNA helicase Srs2 disrupts the Rad51 presynaptic filament   总被引:48,自引:0,他引:48  
Mutations in the Saccharomyces cerevisiae gene SRS2 result in the yeast's sensitivity to genotoxic agents, failure to recover or adapt from DNA damage checkpoint-mediated cell cycle arrest, slow growth, chromosome loss, and hyper-recombination. Furthermore, double mutant strains, with mutations in DNA helicase genes SRS2 and SGS1, show low viability that can be overcome by inactivating recombination, implying that untimely recombination is the cause of growth impairment. Here we clarify the role of SRS2 in recombination modulation by purifying its encoded product and examining its interactions with the Rad51 recombinase. Srs2 has a robust ATPase activity that is dependent on single-stranded DNA (ssDNA) and binds Rad51, but the addition of a catalytic quantity of Srs2 to Rad51-mediated recombination reactions causes severe inhibition of these reactions. We show that Srs2 acts by dislodging Rad51 from ssDNA. Thus, the attenuation of recombination efficiency by Srs2 stems primarily from its ability to dismantle the Rad51 presynaptic filament efficiently. Our findings have implications for the basis of Bloom's and Werner's syndromes, which are caused by mutations in DNA helicases and are characterized by increased frequencies of recombination and a predisposition to cancers and accelerated ageing.  相似文献   

8.
目的研究陕西黄土高原沙棘(Hippophae rhamnoides)根际氢氧化细菌种属分布。方法利用持续通H2的气体循环培养体系分离纯化细菌。通过TTC(2,3,5-氯化三苯基四氮唑)试验和氧化H2能力测定筛选含有氢化酶的菌株。根据其培养特征、形态特征和生理生化特征进行菌株鉴定。用16S rRNA基因序列分析法对氧化氢能力最强的优势菌株构建系统发育树。结果筛选出6株菌初步确定为氢氧化细菌,并划分为4个属:芽孢杆菌属(Bacillus)、气单胞菌属(Aeromonas)、假单胞菌属(Pseudomonas)和微球菌属(Micrococcus)。其中菌株FS2的16S rRNA基因序列(Gen-Bank登录号为GU084156)与芽孢杆菌属相似性为99%,在系统发育树上位于同一分支,因此将菌株FS2归为芽孢杆菌属(Bacillus)。结论说明氢氧化细菌在自然界分布广泛,并为分析氢氧化细菌的种群结构特征提供基础材料。  相似文献   

9.
Hydrogen energy, as a kind of clean energy with great potential, has been a hotspot for study worldwide. Based on the recent research on biohydrogen production, this paper gives a brief review on the following aspects: fermentative hydrogen production process and the engineering control statagy, key factors affecting the efficiency of hydrogen production, such as substrates, cysteine, metal ions, anaerobic fermentation terminal products, and formic acid and ammonia. Moreover, anaerobic fermentative hydrogen-producing strain and regulation and control of enzyme gene in fermentative hydrogen production are also discussed. Finally, the prospect of anaerobic fermentative biohydrogen production is proposed in three study areas, namely developing new techniques for breeding hydrogen-producing bacteria, exploitations of more strains and gene resources, and intensifying the application of microbial molecular breeding in hydrogen production.  相似文献   

10.
D H Hall  Y Liu  D A Shub 《Nature》1989,340(6234):575-576
The organization of genes into exons separated by introns may permit rapid evolution of protein-coding sequences by exon shuffling. Introns could provide non-coding targets for recombination, which would then give rise to novel combinations of exons. Evidence to support this theory is indirect and consists of examples of homologous domains of protein structure encoded in different genes, with introns in conserved positions at the boundaries of these domains. Here, we report the first direct evidence for exon shuffling. Two spontaneous deletion mutations of phage T4 have been characterized by sequencing, and they are clearly the result of recombination between homologous regions of two self-splicing group I introns. As a result of the recombination, exons of different genes are transcribed together, with a hybrid intron between them. One of these introns is proficient in self-splicing.  相似文献   

11.
Hydrogen energy, as a kind of clean energy with great potential, has been a hotspot for study worldwide. Based on the recent research on biohydrogen production, this paper give a brief review on the following aspects: fermentative hydrogen production process and the engineering control statagy, key factors affecting the efficiency of hydrogen production, such as substrates, cysteine, metal ions, anaerobic fermentation terminal products, and formic acid and ammonia. Moreover, anaerobic fermentative hydrogen-producing strain and regulation and control of enzyme gene in fermentative hydrogen production are also discussed. Finally, the prospect of anaerobic fermentative biohydrogen production is proposed in three study areas, namely developing new techniques for breeding hydrogen-producing bacteria, exploitations of more strains and gene resources, and intensifying the application of microbial molecular breeding in hydrogen production.  相似文献   

12.
E M Mota  R A Collins 《Nature》1988,332(6165):654-656
The discovery of intervening sequences (introns) in eukaryotic genes has raised questions about the origin and evolution of these sequences. Hypotheses concerning these topics usually consider the intron as a unit that could be lost or gained over time, or as a region within which recombination can occur to facilitate the production of new proteins by exon shuffling. Additional complexities are observed in introns of mitochondrial and chloroplast genes which contain secondary structures required for messenger RNA splicing and open-reading frames encoding proteins. Here we describe differences in the organization of protein-coding sequences in the intron of the mitochondrial ND1 gene in two closely related species of Neurospora. These differences show that intron sequences involved in secondary structure formation and in protein coding can evolve as physically distinct elements. Indeed, the secondary structure elements of the ND1 intron can contain two different coding sequences located at two different positions within the intron.  相似文献   

13.
Bugreev DV  Mazina OM  Mazin AV 《Nature》2006,442(7102):590-593
Homologous recombination has a crucial function in the repair of DNA double-strand breaks and in faithful chromosome segregation. The mechanism of homologous recombination involves the search for homology and invasion of the ends of a broken DNA molecule into homologous duplex DNA to form a cross-stranded structure, a Holliday junction (HJ). A HJ is able to undergo branch migration along DNA, generating increasing or decreasing lengths of heteroduplex. In both prokaryotes and eukaryotes, the physical evidence for HJs, the key intermediate in homologous recombination, was provided by electron microscopy. In bacteria there are specialized enzymes that promote branch migration of HJs. However, in eukaryotes the identity of homologous recombination branch-migration protein(s) has remained elusive. Here we show that Rad54, a Swi2/Snf2 protein, binds HJ-like structures with high specificity and promotes their bidirectional branch migration in an ATPase-dependent manner. The activity seemed to be conserved in human and yeast Rad54 orthologues. In vitro, Rad54 has been shown to stimulate DNA pairing of Rad51, a key homologous recombination protein. However, genetic data indicate that Rad54 protein might also act at later stages of homologous recombination, after Rad51 (ref. 13). Novel DNA branch-migration activity is fully consistent with this late homologous recombination function of Rad54 protein.  相似文献   

14.
体外定向分子进化是发现和改造生物活性分子的重要方法,提供了一种高效的获得多样性的方法。DNA改组(DNA shuffling)是重要的体外分子进化技术,结合高通量筛选能够改造许多重要的医药、工业、环境保护等方面的商业酶。近年来,许多体外分子进化的新策略和新方法层出不穷,得到了良好的发展和应用,其中有代表性的11种是DNA家族改组(DNA family shuffling),部分基因片段改组、单链DNA家族改组(SSDNAs)、简并引物基因改组(DOGS)、基因组改组(Genome Shuffling)、瞬时模板的随机嵌合(RACHITT)、单向引物的随机重组(MURA)、自我复制(CSR)改组、易错环行扩增(error-prone RCA)、基于遗传密码随机切除(COBARDE)、核酸内切酶V(endonuclease V)替代核酸内切酶DNaseI等。  相似文献   

15.
S Berlin  H Ellegren 《Nature》2001,413(6851):37-38
We have taken a new approach to test the commonly accepted, but recently questioned, principle of clonal inheritance of vertebrate mitochondrial DNA (mtDNA) by relating its inheritance to a female-specific marker of nuclear DNA. Whereas this is impossible in organisms with male heterogamy (such as mammals), we show here that genealogies of mtDNA and the female-specific W chromosome of a bird species are completely concordant. Our results indicate that inheritance of mtDNA is free of detectable recombination effects over an evolutionary timescale.  相似文献   

16.
碱性浸矿细菌是处理碱性脉石矿物的新型高效菌株. 为提高碱性浸矿细菌( Providencia sp. )的浸矿适应性和浸出率,首次对其进行铜矿浆驯化和紫外诱变改良. 使用Design Expert-8软件对改良菌株进行三因素三水平Box-Behnken试验设计与结果分析,考察矿浆中固相质量浓度、接种量和温度三个因素与浸出率之间的关系,利用Design Expert-8软件对试验条件进行优化,确定改良菌株最佳浸出条件,并得到浸出率预测模型. 在最佳浸出条件下对改良菌株与原始菌株别进行浸出试验,比较二者在改良前后生长及浸出率的变化情况. 结果显示:改良菌株能更好适应矿浆环境,细菌浓度最高时可达6. 5 × 108 mL-1左右,浸出率达到了50. 57%;而改良前细菌浓度最高只有3 × 108 mL-1 ,浸出率也只有29. 03%.  相似文献   

17.
AFLP技术及其在动物遗传育种中的应用   总被引:3,自引:0,他引:3  
扩增片段长度多态性(AFLP)被称为“下一代分子标记”。是检测DNA多态性的一种新技术.该技术可靠性强,多态性检出率高,因而被认为是最有效的DNA指纹分析技术,AFLP已广泛应用于分类学、种群遗传学、病理学、DNA指纹分析的研究和建立数量性状基因图谱,成为最主要的遗传标记,论述了AFLP的原理、特点、影响实验成功的关键因素及在动物遗传育种中的应用。  相似文献   

18.
R D Johnson  N Liu  M Jasin 《Nature》1999,401(6751):397-399
The repair of DNA double-strand breaks is essential for cells to maintain their genomic integrity. Two major mechanisms are responsible for repairing these breaks in mammalian cells, non-homologous end-joining (NHEJ) and homologous recombination (HR): the importance of the former in mammalian cells is well established, whereas the role of the latter is just emerging. Homologous recombination is presumably promoted by an evolutionarily conserved group of genes termed the Rad52 epistasis group. An essential component of the HR pathway is the strand-exchange protein, known as RecA in bacteria or Rad51 in yeast. Several mammalian genes have been implicated in repair by homologous recombination on the basis of their sequence homology to yeast Rad51: one of these is human XRCC2. Here we show that XRCC2 is essential for the efficient repair of DNA double-strand breaks by homologous recombination between sister chromatids. We find that hamster cells deficient in XRCC2 show more than a 100-fold decrease in HR induced by double-strand breaks compared with the parental cell line. This defect is corrected to almost wild-type levels by transient transfection with a plasmid expressing XRCC2. The repair defect in XRCC2 mutant cells appears to be restricted to recombinational repair because NHEJ is normal. We conclude that XRCC2 is involved in the repair of DNA double-strand breaks by homologous recombination.  相似文献   

19.
DNA protection by stress-induced biocrystallization.   总被引:28,自引:0,他引:28  
S G Wolf  D Frenkiel  T Arad  S E Finkel  R Kolter  A Minsky 《Nature》1999,400(6739):83-85
The crystalline state is considered to be incompatible with life. However, in living systems exposed to severe environmental assaults, the sequestration of vital macromolecules in intracellular crystalline assemblies may provide an efficient means for protection. Here we report a generic defence strategy found in Escherichia coli, involving co-crystallization of its DNA with the stress-induced protein Dps. We show that when purified Dps and DNA interact, extremely stable crystals form almost instantaneously, within which DNA is sequestered and effectively protected against varied assaults. Crystalline structures with similar lattice spacings are formed in E. coli in which Dps is slightly over expressed, as well as in starved wild-type bacteria. Hence, DNA-Dps co-crystallization is proposed to represent a binding mode that provides wide-range protection of DNA by sequestration. The rapid induction and large-scale production of Dps in response to stress, as well as the presence of Dps homologues in many distantly related bacteria, indicate that DNA protection by biocrystallization may be crucial and widespread in prokaryotes.  相似文献   

20.
V Nagaraja  J C Shepherd  T A Bickle 《Nature》1985,316(6026):371-372
Early attempts to generate new restriction specificities by recombination between allelic restriction-modification systems have been unsuccessful. Bullas et al. succeeded in isolating a new specificity, SQ, in Salmonella that they interpreted as being the result of a recombination event between the parental strains, Salmonella typhimurium and S. postdam, which encode the SB and SP restriction systems, respectively. This interpretation has recently been confirmed by DNA heteroduplex studies with the SB, SP and SQ structural genes. We have determined the DNA sequences recognized by the SB and SP enzymes and found that, like all type I restriction sequences, they are split into two specific domains by a spacer of nonspecific sequence that, for both SB and SP, is 6 base pairs (bp) long. We have now determined the sequence recognized by the recombinant SQ enzyme and find that it is a hybrid between the SB and SP sequences, containing one specific domain from each parental strain. This result implies that each of the two specific domains is recognized by a physically distinct part of the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号