首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
2.
A deficiency of the homeotic complex of the beetle Tribolium   总被引:10,自引:0,他引:10  
Stuart JJ  Brown SJ  Beeman RW  Denell RE 《Nature》1991,350(6313):72-74
In Drosophila, the establishment of regional commitments along most of the anterior/posterior axis of the developing embryo depends on two clusters of homeotic genes: the Antennapedia complex (ANT-C) and the bithorax complex (BX-C). The red flour beetle has a single complex (HOM-C) representing the homologues of the ANT-C and BX-C in juxtaposition. Beetles trans-heterozygous for two particular HOM-C mutations spontaneously generate a large deficiency, presumably by an exchange within the common region of two overlapping inversions. Genetic and molecular results indicate that this deficiency spans at least the interval between the Deformed and abdominal-A homologues. In deficiency homozygous embryos, all gnathal, thoracic and abdominal segments develop antennal appendages, suggesting that a gene(s) has been deleted that acts to distinguish trunk from head. There is no evidence that beetles have a homologue of the segmentation gene fushi tarazu of similar genomic location and function. On the basis of the genetic tractability, convenient genome size and organization of Tribolium, and its relatively long phylogenetic divergence from Drosophila (>300 million years), we have integrated developmental genetic and molecular analyses of the HOM-C. We isolated about 70 mutations in the complex representing at least six complementation groups. The homeotic phenotypes of adults and lethal embryos lead us to believe that these beetle genes are homologous with the Drosophila genes indicated in Fig. 1 (see text).  相似文献   

3.
4.
5.
D G Wilkinson  S Bhatt  M Cook  E Boncinelli  R Krumlauf 《Nature》1989,341(6241):405-409
The vertebrate hindbrain develops in a segmental pattern, with distinctive groups of neurons originating from different segments. We report here that members of the Hox-2 cluster of murine homoeobox genes are expressed in segment-specific patterns in the developing hindbrain, with successive genes having boundaries at two-segment intervals. These data indicate that Hox genes specify segment phenotype, a role analogous to that of their Drosophila homologues.  相似文献   

6.
A Zimmer  P Gruss 《Nature》1989,338(6211):150-153
Several mouse gene families related to Drosophila developmental control genes and containing a homoeobox, a paired box or a finger domain, have been cloned and structurally analysed. On the basis of structural similarities to the Drosophila genes and of their spatially and temporally restricted expression patterns during mouse embryogenesis, it has been proposed that these mammalian genes also are involved in the control of development. To elucidate the function of homoeobox genes by genetic means, mouse mutants must be generated. We have developed a technique for mutagenesis in vivo and have used it to mutate the homoeobox Hox 1.1 gene. In vivo mutagenesis was achieved through homologous recombination between an endogenous Hox 1.1 allele and a microinjected mutated gene in pluripotent embryonic stem (ES) cells. Mutant cells were identified by means of the polymerase chain reaction (PCR) and mutant clones were used to generate chimaeric mice. Because the homologous recombination event is formally a gene conversion event and no selection is required to screen for cells carrying the mutated allele, in vivo mutagenesis allows specific alterations in the target sequence to be made without the introduction of any other sequences.  相似文献   

7.
A Fjose  W J McGinnis  W J Gehring 《Nature》1985,313(6000):284-289
The engrailed locus of Drosophila melanogaster has the characteristics of both a homoeotic gene and a segmentation gene: like a homoeotic gene, it specifies the development of specific compartments of the Drosophila embryo (the posterior compartments of each segment), and, like mutations of segmentation genes, lethal alleles of engrailed affect also the pattern of segmentation of the embryo. Here we report that like many of the homoeotic genes of the bithorax and Antennapedia complexes, engrailed has a 'homoeo box' sequence: also, like the segmentation gene fushi tarazu, the engrailed gene displays a periodic pattern of expression in Drosophila embryos.  相似文献   

8.
Homoeotic genes in the bithorax and Antennapedia complexes of Drosophila melanogaster appear to specify the developmental fate of segments of the fly. Some of these genes (Ultrabithorax, Antennapedia and fushi tarazu) share homology due to their conservation of a 'homoeo domain'1,2 consisting of 60 amino acids. Cross-hybridization and cloning experiments show that the homoeo domain is conserved in a frog (Xenopus laevis) gene expressed in early development and may also be present in earthworm, beetle, chicken, mouse and human genomes. The extreme conservation found in the amino acid sequences between the Drosophila and Xenopus domains suggests that the domain has a vital function in the control of early development. Here we report the results of a search made in the Dayhoff sequence bank, which reveals a lesser but apparently significant homology between the homoeo domain and the amino acids coded from parts of the a 1 and alpha 2 mating type genes of the yeast Saccharomyces cerevisiae.  相似文献   

9.
C Rushlow  M Frasch  H Doyle  M Levine 《Nature》1987,330(6148):583-586
The homoeobox gene zerknüllt (zen) plays an important role in the differentiation of dorsal tissues during Drosophila development. zen- embryos show transformations in the dorsal-most regions of the fate map, and lack several tissues that normally derive from these regions, including the amnioserosa and optic lobe. zen displays a simple dorsal on/ventral off pattern as early as cleavage cycle 10-11 (ref. 2). We have prepared a polyclonal antibody against a full-length zen protein, and used this to examine its pattern of expression in mutants that disrupt dorsal-ventral polarity. Most or all of the maternally expressed genes that are involved in this process have been previously identified and fall into two classes, so called 'dorsalizers' and 'ventralizers' (see refs 4-7, reviewed in ref. 8). On the basis of our analysis of zen expression in each of these maternal mutants we propose that one or more of the dorsalizing genes encodes a repressor which inhibits the expression of zen in ventral regions of developing embryos. The ventralizing gene cactus might play an important role in restricting the activity of this repressor to ventral regions, thereby permitting the activation of zen in those dorsal tissues where its function is critically required.  相似文献   

10.
M Bienz  G Tremml 《Nature》1988,333(6173):576-578
Domains of differential homeotic gene activity are formed at specific positions along the anteroposterior axis of the early Drosophila embryo. Homeotic genes are required continuously throughout development, so that homeotic gene activity has to be maintained independently of the positional information provided in the early embryo. In the ectoderm, the domains of homeotic gene activity partially overlap, but we have found that in the visceral mesoderm at least three of these genes are expressed in adjacent and mutually exclusive domains. It has been proposed that stable, sharply demarcated domains of this type could be established if a homeotic gene product stimulated its own expression locally and inhibited the expression of other homeotic genes, which Meinhardt has termed autocatalysis and mutual exclusion respectively. Furthermore, autocatalysis of this kind can in principle account for the maintenance of homeotic gene activity throughout development. We find that the unique domain of Ultrabithorax (Ubx) expression in the visceral mesoderm is dependent both on autocatalysis and on an exclusion mechanism: Ubx product is required for its own synthesis, whereas the product of the posteriorly adjacent gene abdominal-A represses Ubx expression.  相似文献   

11.
S J Gaunt  J R Miller  D J Powell  D Duboule 《Nature》1986,324(6098):662-664
Pattern formation in animal development requires that genes be expressed differentially according to position in the sheets of cells that make up the early embryo. The homoeobox-containing genes of Drosophila are control genes active both in the establishment of a segmentation pattern and in the specification of segment identity. In situ hybridization experiments confirm that these genes are expressed in a segmentally-restricted manner and that their expression presages morphological differentiation of segmental structures. Homoeobox genes have recently been isolated from the mouse and have been shown to be expressed during mouse development. Using in situ hybridization, we show here that expression of the mouse homoeobox gene Mo-10 (ref. 7) is spatially restricted in the developing embryo and that localization of expression is already evident within the germ layers before their morphological differentiation. These findings support the suggestion that the homoeobox genes of mammals, like those of Drosophila, may be important in pattern formation.  相似文献   

12.
Targets of homeotic gene control in Drosophila   总被引:18,自引:0,他引:18  
A P Gould  J J Brookman  D I Strutt  R A White 《Nature》1990,348(6299):308-312
  相似文献   

13.
14.
Tomoyasu Y  Wheeler SR  Denell RE 《Nature》2005,433(7026):643-647
The two pairs of wings that are characteristic of ancestral pterygotes (winged insects) have often undergone evolutionary modification. In the fruitfly, Drosophila melanogaster, differences between the membranous forewings and the modified hindwings (halteres) depend on the Hox gene Ultrabithorax (Ubx). The Drosophila forewings develop without Hox input, while Ubx represses genes that are important for wing development, promoting haltere identity. However, the idea that Hox input is important to the morphologically specialized wing derivatives such as halteres, and not the more ancestral wings, requires examination in other insect orders. In beetles, such as Tribolium castaneum, it is the forewings that are modified (to form elytra), while the hindwings retain a morphologically more ancestral identity. Here we show that in this beetle Ubx 'de-specializes' the hindwings, which are transformed to elytra when the gene is knocked down. We also show evidence that elytra result from a Hox-free state, despite their diverged morphology. Ubx function in the hindwing seems necessary for a change in the expression of spalt, iroquois and achaete-scute homologues from elytron-like to more typical wing-like patterns. This counteracting effect of Ubx in beetle hindwings represents a previously unknown mode of wing diversification in insects.  相似文献   

15.
A gene complex controlling segmentation in Drosophila.   总被引:198,自引:0,他引:198  
E B Lewis 《Nature》1978,276(5688):565-570
The bithorax gene complex in Drosophila contains a minimum of eight genes that seem to code for substances controlling levels of thoracic and abdominal development. The state of repression of at least four of these genes is controlled by cis-regulatory elements and a separate locus (Polycomb) seems to code for a repressor of the complex. The wild-type and mutant segmentation patterns are consistent with an antero-posterior gradient in repressor concentration along the embryo and a proximo-distal gradient along the chromosome in the affinities for repressor of each gene's cis-regulatory element.  相似文献   

16.
17.
18.
Genetic organization of Drosophila bithorax complex   总被引:2,自引:0,他引:2  
E Sánchez-Herrero  I Vernós  R Marco  G Morata 《Nature》1985,313(5998):108-113
The Drosophila bithorax complex is subdivided into three major genes: Ultrabithorax+, abdominal-A+ and Abdominal-B+. Each of these genes plays its principal part in a particular anatomical domain of the body, where it is specifically required to determine the correct segmental pattern.  相似文献   

19.
B Zink  R Paro 《Nature》1989,337(6206):468-471
The specification and maintenance of the metameric pattern in Drosophila melanogaster is regulated by complicated gene interactions. The differential expression of the homoeotic genes of the Antennapedia complex (ANT-C) and bithorax complex (BX-C), which determine segmental identities, is partly controlled by cross-regulatory interactions of loci within the two clusters and partly by trans-acting factors located outside the two complexes. One of the trans-regulatory genes, Polycomb (Pc), acts as a repressor of the ANT-C and BX-C. Mutations of Polycomb result in a complete depression of the homoeotic genes, leading to abdominal transformations of all body segments. Polycomb is part of a large class of trans-regulatory genes (Pc-group), estimated to comprise up to 40 loci. We have raised antibodies against the Polycomb protein, and, using an improved immunostaining technique, showed that the Polycomb protein binds to 60 discrete sites along the polytene chromosomes of salivary glands. These sites comprise the ANT-C and the BX-C as well as several locations of Pc-group genes. This is the first clear evidence for a direct interaction of Polycomb with homoeotic loci and other Pc-group genes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号