首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
为研究微通道换热和压降特性的影响因素,在当量直径分别为0.923 1,1.333 3和2.000 0 mm的矩形微通道内,以0.1%和0.5%(体积分数)的Al2O3-H2O纳米流体为实验工质,进行无相变以及沸腾传热与流阻特性实验研究,分析雷诺数对努塞尔数和单相流动压降的影响。研究结果表明:增加纳米粒子体积分数对摩擦压降影响较小,而努塞尔数则得到较大提高;在2.0 mm宽槽道内,纳米流体的换热系数比水的换热系数高18%;而0.6 mm宽槽道的换热系数比2.0 mm宽槽道的换热系数提高了近2倍;随着槽道尺寸的减少,摩擦压降显著增大;当雷诺数为800时,0.6 mm和1.0 mm宽槽道摩擦压降分别是2.0 mm宽槽道摩擦压降的23.3倍和4.4倍;热流密度和质量流量增大都将导致摩擦压降增大。  相似文献   

2.
矩形微槽内水的流动沸腾压降特性实验研究   总被引:1,自引:0,他引:1  
对截面尺寸为0.4 mm×0.2 mm,水力直径为0.267 mm水平布置的不锈钢矩形微槽内水的流动沸腾压降特性进行了实验研究.实验结果表明:当L-M参数X较小时,两相摩擦压降修正因子φ2FL随X的增大而减小,相同进口温度下,φ2FL的变化随流量的增大而增大;当X大于0.3时,φ2FL随X增大而增大,且几乎不受流量的影响.在实验结果基础上,考虑水力直径及流量的影响,在本实验范围内导出了新的矩形单微槽内水流动沸腾的压降关联式,其预测本实验结果的误差在12.6%以内.  相似文献   

3.
以去离子水和质量分数为0.3%的水基Al_2O_3纳米流体为工质,对水力直径为1 241μm的矩形微通道内流动沸腾过程进行研究。为了探究微通道壁面粗糙度对两相流摩擦压降的影响情况,运用化学抛光处理手段来改变壁面粗糙度。研究结果表明:实验工况相同时,两相流摩擦压降随着微通道壁面粗糙度的增大而增大;纳米流体为工质时两相流摩擦压降高于去离子水为工质时两相流摩擦压降,高热流密度下更为差异明显;将实验值分别与3种分相模型的预测值对比来验证现有压降模型的准确性,结果偏差较大,而且壁面越粗糙预测效果越差。现有的压降计算模型需要进一步完善以增强其普适性。  相似文献   

4.
为探究微柱群通道流动沸腾两相摩擦压降的影响因素,对高度和直径均为500 mm的微圆柱组成的叉排微柱群通道进行了实验研究,并借助高速摄像仪对通道内不同加热功率的气液两相流型进行了记录分析。实验中质量流速范围341~598.3 kg·m~(-2)·s~(-1),热流密度范围20~160 W·cm~(-2),工质出口干度范围0~0.2。实验结果表明,两相摩擦压降随着质量流速的增大而增大,随着热流密度的增大呈线性增长;工质进口过冷度对两相摩擦的影响随着出口干度的升高逐渐减弱。通过可视化研究发现,随着热流密度的增大,微通道内流动沸腾的流型变化依次为泡状流、环状流,环状流区两相摩擦压降明显高于泡状流区。  相似文献   

5.
分别以去离子水及质量分数为0.3%,0.6%和0.9%Al2O3纳米流体为工质,在截面宽×高为0.3 mm×2.0 mm矩形铝基微通道内进行沸腾换热实验,并利用高速摄像仪进行可视化研究,分析热流密度、雷诺数、壁面粗糙度对流体传热系数的影响,探究流体流型变化与气泡生长规律。研究结果表明:纳米流体与去离子水的饱和沸腾传热系数随热流密度的增加而快速增大,努塞尔数Nu随雷诺数Re增大而增大但增幅不同,质量分数为0.3%,0.6%和0.9%的3种纳米流体的Nu比去离子水的Nu分别提高约8%,13%和16%;在相同热流密度及质量流速条件下,纳米流体与去离子水的传热系数均随传热壁面粗糙度的增加而增大;流体流型的变化呈现周期性,增大热流密度,可缩短气泡生长周期,泡状流比例增加。  相似文献   

6.
小管径强化管内R410A-油混合物流动沸腾阻力特性   总被引:1,自引:0,他引:1  
实验研究了环保制冷工质R410A-润滑油混合物在5 mm小管径内螺纹强化管内流动沸腾的摩擦压降特性.实验结果表明,对于纯制冷剂R410A,摩擦压降随着干度的增大先增大后减小,峰值出现在干度为0.7~0.8左右;R410A-油混合物的摩擦压降随油平均质量分数、干度和质流密度的增大而增大,当油平均质量分数从0增长到5%时,在干度为0.9的高干度工况下,摩擦压降最大可增加120%.R410A-油混合物在5 mm强化管内流动沸腾的摩擦压降与7 mm强化管的相比约增大10%~30%;用已有的7 mm强化管的压降关联式预测5 mm强化管的压降时,误差为±40%.以R410A-油混合物在7和5 mm强化管内摩擦压降的实验值为基础,建立了基于混合物物性的R410A-油混合物在不同管径强化管内的摩擦压降关联式.该关联式的预测值与95%的实验值误差在±20%以内.  相似文献   

7.
以去离子水和w(Fe_3O_4)=0.5%的磁纳米流体为实验工质,在3种不同尺寸的矩形微细通道内进行饱和流动沸腾传热实验,研究了流动沸腾传热过程中质量流速、有无磁场作用下的磁纳米流体对CHF特性的影响.结果表明:去离子水和0.5%的磁纳米流体的CHF值均随质量流速的增大而增大,且质量流速较小时,CHF值增幅较明显;无外加磁场时,0.5%的磁纳米流体的CHF值相比去离子水可提高71%~157%;0.5%的磁纳米流体的CHF值随着磁场强度的增加而增大,增加幅度约为4%~17.4%;将实验值与Kosar模型预测值进行对比,发现工质为去离子水和0.5%的磁纳米流体时平均绝对误差分别为25%、30%,而对Kosar模型进行修正后,平均相对误差均小于15%,实验结果预测性明显提高.  相似文献   

8.
R410A-油在φ7 mm水平直光管内流动沸腾阻力特性   总被引:1,自引:0,他引:1  
研究了环保替代制冷工质R410A-润滑油混合物在水平直光管内的流动沸腾摩擦压降特性,探索了油的平均质量分数、干度和质量流率对摩擦压降的影响.实验测试管为光管,长度为2m,外径为7.0 mm,内径为6.34 mm.实验结果表明,R410A-油混合物在光管内流动沸腾的摩擦压降随平均油浓度、干度和质量流率的增大而增大,当油的平均质量分数从0增长到5%时,压降最大可增加50%.开发了适用于R410A-油混合物光管内的流动沸腾摩擦压降关联式,新的关联式预测值与92%以上的实验数据偏差在±15%以内,平均误差为6.6%,最大误差为29.4%.  相似文献   

9.
为了探究颗粒堆积多孔介质通道内两相流动阻力特性,使用不同尺寸的球形颗粒构建实验床,在碎片床冷却性实验装置(DEBECO)上进行了气-水两相流动实验.基于实验数据,对比验证了多孔介质内两相流动阻力压降预测模型,重点分析了颗粒床内气液两相相间摩擦力对阻力压降的影响.结果表明:对小尺寸(如d=1.5mm)颗粒堆积床,气液两相相间摩擦力对其两相流动阻力压降影响微弱,两相流动阻力压降随气速增大呈逐渐上升的趋势;对大尺寸(如d=6mm)颗粒堆积床,在低速下气液两相相间摩擦力对阻力压降影响显著,随气速增大,其阻力压降出现先下降后上升的趋势.  相似文献   

10.
以制冷剂R141b为实验工质,在截面尺寸为1 mm×2 mm,壁面接触角分别为67°、0°和156°的普通亲水、超亲水及超疏水矩形微细通道进行流动沸腾实验,并对3种表面微细通道沿程测点压力进行对比,分析极端润湿性(超亲水和超疏水)微细通道内R141b的流动沸腾压降特性.研究结果表明:极端润湿性微细通道内各压降分量比例和普通亲水微细通道大致相同,单位长度两相摩擦压降均随着质量通量、入口温度和热流密度的增大而增大;超疏水表面微细通道进出口总压降最大,是超亲水表面的1.08~1.17倍,且在单相流动区域内的沿程测点压力曲线斜率最小,两相流动区域内的沿程测点压力曲线斜率最大;引入壁面表面能参数λ_s对Qu-Mudawar模型进行修正,能更好地预测实验值,平均绝对误差为10.7%.  相似文献   

11.
以水为工质,对内径为0.399 mm水平布置的不锈钢微管内的流动沸腾压降进行了实验研究.实验条件:进口温度分别为30℃、60℃、75℃,流量范围79.62~238.85 kg/(m2.s),有效加热热流密度27.8~91 kW/m2.实验结果表明,在实验范围内两相摩擦压降修正因子与流量变化的关系不大,而与进口温度的大小存在较为密切的关系.因此,结合无量纲进口温度参数建立了新的微管内水流动沸腾的压降关联式,其预测实验结果的误差在12.2%以内.  相似文献   

12.
研究了环保替代制冷工质R410A-润滑油混合物在水平直强化管内的流动沸腾摩擦压降特性,探索了油的平均质量分数、干度和质量流率对摩擦压降的影响.实验测试管为内螺纹强化管,长度为2 m、外径为7.0 mm.实验结果表明,R410A-油混合物在强化管内的流动沸腾摩擦压降随油的平均质量分数、干度和质量流率的增大而增大,当油的平均质量分数从0增长到5%时,压降最大可增加31%.R410A-油混合物在强化管内流动沸腾的摩擦压降与光管相比大约增大10%~35%;润滑油的存在对强化管内摩擦压降的增强作用与光管相比较小.开发了适用于R410A-油混合物强化管内流动沸腾的摩擦压降关联式,新的关联式预测值与97%以上的实验数据偏差在±10%以内,平均误差为4.25%,最大误差为14%.  相似文献   

13.
研究了环保替代制冷工质R410A-润滑油混合物在水平直强化管内的流动沸腾摩擦压降特性,探索了油的平均质量分数、干度和质量流率对摩擦压降的影响.实验测试管为内螺纹强化管,长度为2m、外径为7.0mm.实验结果表明,R410A-油混合物在强化管内的流动沸腾摩擦压降随油的平均质量分数、干度和质量流率的增大而增大,当油的平均质量分数从0增长到5%时,压降最大可增加31%.R410A-油混合物在强化管内流动沸腾的摩擦压降与光管相比大约增大10%~35%;润滑油的存在对强化管内摩擦压降的增强作用与光管相比较小.开发了适用于R410A-油混合物强化管内流动沸腾的摩擦压降关联式,新的关联式预测值与97%以上的实验数据偏差在±10%以内,平均误差为4.25%,最大误差为14%.  相似文献   

14.
研究了环保替代制冷工质R410A-润滑油混合物在水平直光管内的流动沸腾摩擦压降特性,探索了油的平均质量分数、干度和质量流率对摩擦压降的影响.实验测试管为光管,长度为2m,外径为7.0mm,内径为6.34mm.实验结果表明,R410A-油混合物在光管内流动沸腾的摩擦压降随平均油浓度、干度和质量流率的增大而增大,当油的平均质量分数从0增长到5%时,压降最大可增加50%.开发了适用于R410A-油混合物光管内的流动沸腾摩擦压降关联式,新的关联式预测值与92%以上的实验数据偏差在±15%以内,平均误差为6.6%,最大误差为29.4%.  相似文献   

15.
R410A-油在5 mm小管径光管内流动沸腾的阻力特性   总被引:1,自引:0,他引:1  
为了促进环保制冷剂R410A在制冷空调紧凑式换热器设计中的实际应用,研究了R410A-油混合物在小管径光管内的流动沸腾摩擦压降特性.测试管的外径为5 mm,内径为4.18mm.实验结果表明:对于纯制冷剂R410A,小管径管内的摩擦压降随着干度的增大先增大后减小,峰值出现在于度为0.7~0.8左右处;R410A-油混合物的摩擦压降随平均油浓度、干度和质量流率的增大而增大,当油的平均质量分数Wno从0%增长到5%,在干度为0.9的高于度工况下,摩擦压降最大可增加80%~120%.R410A-油混合物在5 mm小管径光管内流动沸腾的摩擦压降与7 mm光管相比大约增大10%~50%.基于混合物性开发了R410A-油混合物在5 mm小管径光管内流动沸腾的摩擦压降关联式,新的关联式预测值与94%的实验数据误差在土20%以内,平均误差为8.5%.  相似文献   

16.
对环保制冷工质R410A与润滑油混合物在4 mm小管径内螺纹强化管内流动冷凝的压降特性进行了实验研究,分析了润滑油对流动冷凝摩擦压降的影响.结果表明,在干度小于0.6时,润滑油会减小R410A在4 mm强化管内的冷凝摩擦压降,最大可减小12%;而在干度大于0.6时,润滑油会增大R410A在4 mm强化管内的冷凝摩擦压降,最大可增加13%.结合已有文献中的数据,基于混合物性建立了适用于R410A 油混合物在小管径强化管内流动冷凝的压降关联式,关联式预测值与94%的实验值误差在±30%以内.
  相似文献   

17.
对稳定的液态金属钠沸腾两相流动压降特性进行了实验研究和理论分析.得到了不同工况下液钠沸腾两相流动压降特性的实验数据,建立了环形通道内液钠两相流动压降特性计算模型Na-TPDP,并将Lockhart-Martineli,Kaiser-Peppler,Chen-Kalish等人不同的两相摩擦压降倍增因子关系式进行了计算分析和比较.计算结果表明:Kaiser-Peppler的两相摩擦压降倍增因子计算式与文中的实验结果符合较好.  相似文献   

18.
研究了添加剂对垂直铜管内流动沸腾压降的影响。实验介质为水,所用的添加剂为分子量256万的聚丙烯酰胺胶乳(PAM)及十八烷胺(ODA).测定了添加剂溶液流动沸腾两相流压降,并且用Martinelli分离流模型回归了不同添加剂浓度下的液相摩擦因子f1与液相雷诺券Ret间的函数关系.根据回归的模型方程计算两相流压降,与实验值比较其相对误差为15%左右,研究结果表明,在一定热通量和一定浓度范围内,加入少量添加剂PAM可改善流体的流动,减少流动沸腾的阻力,提高单位压降的沸腾传热系数;但ODA无明显的减阻效果。  相似文献   

19.
通过梯形微通道内水的单相流动摩擦压降和水蒸气凝结压降实验,分析水蒸气冷凝过程及压力和温度等参数对其水蒸气凝结压降的影响,根据实验数据修正Lockhart-Martinelli的两相流压降模型,提出了新的实验关联式,并将实验结果与现有微通道和常规通道的压降关联式进行比较.结果表明:单相层流摩擦因数随Re的增加而缓慢增大;凝结压降在质量流量保持不变的条件下,随干度的增加而增大,在相同千度条件下,随质量流量增加而增大,同时随微通道水力直径的增加而减小;根据实验结果回归得到适用于梯形微通道内凝结摩擦压降Martinelli-Chisholm常数C的关联式.  相似文献   

20.
随着电子器件的集成化和小型化,其散热量超过10 MW/m~2将成为现实,这超出了目前大功率系统中使用的单相冷却方案的上限,所以必须再次开发新的冷却方案.克服单相传热局限性的一种方法是转变为两相沸腾传热,而临界热流密度又是所有沸腾传热的上限值.因此,为了提高微通道内流动沸腾传热的临界热流密度,本文设计开发了非均匀导热性传热板.通过将两种不同导热性能的材料(铜和聚四氟乙烯)交替布置在靠近传热表面的传热板内,实现了传热表面的非均匀温度分布和异态相干沸腾模式(核态沸腾与膜态沸腾共存且相互干涉的状态).同时搭建了微通道流动沸腾实验系统,其微通道截面尺寸为1.84 mm×70.00 mm,通道长度为280.0 mm,传热板表面尺寸为10.0 mm×10.0 mm,流体工质为去离子水.在不同入口流速v=0.1 m/s、0.2 m/s、0.4 m/s和不同过冷度DT_(sub)=10.0 K、20.0 K、30.0 K条件下,研究了非均匀导热性传热板在微通道流动沸腾中的传热强化效果.结果表明,相对于单纯的核态沸腾状态,异态相干沸腾状态能够有效地提升流动沸腾传热的临界热流密度.此外,改变入口流速和过冷度对临界热流密度有明显影响且趋势相同,减小入口流速和过冷度都会增大临界热流密度的提升比例.在本文的实验条件范围内,在水的流速v=0.1 m/s、过冷度DT_(sub)=10.0 K的条件下,实现了最高约43.4%的临界热流密度提升比例.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号