首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Foamed glass-ceramics doped with cerium oxide (CeO2) were successfully prepared from high-titanium blast furnace slag by one-step sintering. The influence of CeO2 addition (1.5wt%–3.5wt%) on the crystalline phases, microstructure, and properties of foamed glass-ceramics was studied. Results show that CeO2 improves the stability of the glass phase and changes the two-dimensional crystallization mechanism into three-dimensional one. XRD analysis indicates the presence of Ca(Mg, Fe)Si2O6 and Ca(Ti, Mg, Al)(Si, Al)2O6 in all sintered samples. Added with CeO2, TiCeO4 precipitates, and crystallinity increases, leading to increased thickness of pore walls and uniform pores. The comprehensive properties of foamed glass-ceramics are better than that of samples without CeO2. In particular, the sample added with a suitable amount of CeO2 (2.5wt%) exhibits bulk density that is similar to and compressive strength (14.9 MPa) that is more than twice of foamed glass-ceramics without CeO2.  相似文献   

2.
Synthetic slag samples of the CaO-SiO2-MgO-Al2O3-Cr2O3 system were obtained to clarify the effect of FeO on the formation of spinel phases and Cr distribution. X-ray diffraction (XRD) and scanning electron microscopy (SEM) equipped with energy-dispersive spectroscopy (EDS), as well as the thermodynamic software FactSage 6.2, were used for sample characterization. The results show that the addition of FeO can decrease the viscosity of molten slag and the precipitation temperatures of melilite and merwinite. The solidus temperature significantly decreases from 1400 to 1250°C with the increase of FeO content from 0wt% to 6wt%. The addition of FeO could enhance the content of Cr in spinel phases and reduce the content of Cr in soluble minerals, such as merwinite, melilite, and dicalcium silicate. Hence, the addition of FeO is conducive to decreasing Cr leaching.  相似文献   

3.
A new approach of removing the phosphorus-rich phase from high-phosphorous iron ore by melt separation at 1573 K in a super- gravity field was investigated. The iron-slag separation by super-gravity resulted in phosphorus being effectively removed from the iron-rich phase and concentrated as a phosphorus-rich phase at a temperature below the melting point of iron. The samples obtained by super-gravity exhibited obvious layered structures. All the iron grains concentrated at the bottom of the sample along the super-gravity direction, whereas the molten slag concentrated in the upper part of the sample along the opposite direction. Meanwhile, fine apatite crystals collided and grew into larger crystals and concentrated at the slag–iron interface. Consequently, in the case of centrifugation with a gravity coefficient of G = 900, the mass fractions of the slag phase and iron-rich phase were similar to their respective theoretical values. The mass fraction of MFe in the iron-rich phase was as high as 97.77wt% and that of P was decreased to 0.092wt%.  相似文献   

4.
To identify and establish beneficiation techniques for banded hematite quartzite (BHQ) iron ore, a comprehensive research on BHQ ore treatment was carried out. The BHQ ore was assayed as 38.9wt% Fe, 42.5wt% SiO2, and 1.0wt% Al2O3. In this ore, hematite and quartz are present as the major mineral phases where goethite, martite, and magnetite are present in small amounts. The liberation of hematite particles can be enhanced to about 82% by reducing the particle size to below 63 μm. The rejection of silica particles can be obtained by magnetic and flotation separation techniques. Overall, the BHQ ore can be enriched to 65.3wt% Fe at 61.9% iron recovery. A flowsheet has been suggested for the commercial exploitation of the BHQ ore.  相似文献   

5.
An iron-silicate slag, from a zinc-copper smelting process, and mixtures of this slag with 5wt%, 10wt%, and 15wt% alumina addition were re-melted, semi-rapidly solidified, and characterized using scanning electron microscopy equipped with energy dispersive spectroscopy, and X-ray diffraction. The FactSageTM6.2 thermodynamic package was applied to compare the stable phases at equilibrium conditions with experimental characterization. A standard European leaching test was also carried out for all samples to investigate the changes in leaching behaviour because of the addition of alumina. Results show that the commonly reported phases for slags from copper and zinc production processes (olivine, pyroxene, and spinel) are the major constituents of the current samples. A correlation can be seen between mineralogical characteristics and leaching behaviours. The sample with 10wt% alumina addition, which contains high amounts of spinels and lower amounts of the other soluble phases, shows the lowest leachabilities for most of the elements.  相似文献   

6.
An efficient approach for lead extraction from waste funnel glass through the lead smelting process has been proposed. To clarify the effect of funnel glass addition on the degradation of magnesia-chromite refractories by ZnO-containing fayalite slag, the corrosion behavior of magnesia-chromite refractories in lead smelting slags with different funnel glass additions from 0 wt% to 40 wt% was tested. Scanning electron microscopy with energy dispersive X-ray spectroscopy(SEM-EDS) was used to acquire the microstructural information of the worn refractory samples. Experimental results showed that the corrosion of magnesia-chromite refractory consisted predominantly of the dissolution of MgO into slag. ZnO and FeO reacted with periclase and chromite to form(Zn,Fe,Mg)O solid solution and(Zn,Fe,Mg)(Fe,Al,Cr)_2O_4 spinel, respectively. With the addition of funnel glass, the solubility of MgO increased whereas ZnO levels remained stable, thereby resulting in a reduced Mg content and an elevated Zn and Fe content in the(Zn,Fe,Mg)O solid solution and the(Zn,Fe,Mg)(Fe,Al,Cr)_2O_4 spinel. Considering the stability of the(Zn,Fe,Mg)O solid solution layer and the penetration depth of the slag, the optimal funnel glass addition for lead smelting was found to be 20 wt%.  相似文献   

7.
Oolitic iron ore is one of the most important iron resources. This paper reports the recovery of iron from high phosphorus oolitic iron ore using coal-based reduction and magnetic separation. The influences of reduction temperature, reduction time, C/O mole ratio, and CaO content on the metallization degree and iron recovery were investigated in detail. Experimental results show that reduced products with the metallization degree of 95.82% could be produced under the optimal conditions (i.e., reduction temperature, 1250℃; reduction time, 50 min; C/O mole ratio, 2.0; and CaO content, 10wt%). The magnetic concentrate containing 89.63wt% Fe with the iron recovery of 96.21% was obtained. According to the mineralogical and morphologic analysis, the iron minerals had been reduced and iron was mainly enriched into the metallic iron phase embedded in the slag matrix in the form of spherical particles. Apatite was also reduced to phosphorus, which partially migrated into the metallic iron phase.  相似文献   

8.
采用还原烧结-磁选法处理高铁铝土矿,考察了氧化钙对烧结及烧结产品铝铁分离效果的影响,借助于X射线衍射仪、扫描电子显微镜,研究了不同氧化钙用量下还原烧结产品的物相组成及微观特性.结果表明,当氧化钙的质量分数为70%时,烧结物料的金属化率达到了93.95%,磁选精矿中铁的质量分数为83.10%,富铝渣的Al2O3浸出率为61.14%,Ca O分别与Al2O3和Si O2全部生成了12Ca O·7Al2O3和Ca2Si O2,铁元素得到较好的还原,同时非铁物质能够与铁颗粒分离.  相似文献   

9.
The sticking phenomenon between molten slag and refractory is one of the crucial problems when preparing ferronickel from laterite ore using rotary hearth furnace or rotary kiln processes. This study aims to ameliorate sticking problems by using silicon dioxide (SiO2) to adjust the melting degree of the briquette during reduction roasting. Thermodynamic analysis indicates that the melting temperature of the slag gradually increases with an increase in the SiO2 proportion (SiO2/(SiO2 + Al2O3 + MgO) mass ratio). Experimental validations also prove that the briquette retains its original shape when the SiO2 proportion is greater than 75wt%, and sticking problems are avoided during reduction. A ferronickel product with 8.33wt% Ni and 84.71wt% Fe was prepared via reductive roasting at 1500℃ for 90 min with a SiO2 proportion of 75wt% and a C/O molar ratio of 1.0 followed by dry magnetic separation; the corresponding recoveries of Ni and Fe reached 75.70% and 77.97%, respectively. The microstructure and phase transformation of reduced briquette reveals that the aggregation and growth of ferronickel particles were not significantly affected after adding SiO2 to the reduction process.  相似文献   

10.
A systemic investigation was done on the chemistry and crystal structure of boundary phases in sintered Ce9Nd21FebalB1(wt%) magnets. Ce2Fe14B is believed to be more soluble in the rare-earth(RE)-rich liquid phase during the sintering process. Thus, the grain size and oxygen content were controlled via low-temperature sintering, resulting in high coercivity and maximum energy products. In addition, Ce formed massive agglomerations at the triple-point junctions, as confirmed by elemental mapping results. Transmission electron microscopy(TEM) images indicated the presence of(Ce,Nd)Ox phases at grain boundaries. By controlling the composition and optimizing the preparation process, we successfully obtained Ce9Nd21FebalB1 sintered magnets; the prepared magnets exhibited a residual induction, coercivity, and energy product of 1.353 T, 759 k A/m, and 342 k J/m3, respectively.  相似文献   

11.
Using steel slag as a main raw material of ceramics is considered as a high value-added way. However, the relationship among the initial composition, ceramic microstructure, and macroscopic properties requires further study. In this paper, a series of ceramics with different slag ratios (0–70wt%) were designed, and the software FACTsage was introduced to simulate the formation of crystalline phases. The simulation results indicate that mullite is generated but drastically reduced at the slag ratios of 0–25wt%, and anorthite is the dominant crystalline phase in the slag content of 25wt%-45wt%. When the slag ratio is above 45wt%, pyroxene is generated more than anorthite. This is because increasing magnesium can promote the formation of pyroxene. Then, the formula with a slag content of 40wt% was selected and optimized. X-ray diffraction results were good consistent with the simulation results. Finally, the water absorption and bending strength of optimized samples were measured.  相似文献   

12.
The experiments on the cemented backfilling performance of yellow phosphorus slag, including physical-mechanical properties, chemical compositions, optimized proportion, and cementation mechanisms, were carried out to make good use of yellow phosphorus slag as well as tackle with environment problems, safety problems, geological hazards, and high-cost issues during mining in Kaiyang Phosphorus Mine Group, Guizhou. The results show that yellow phosphorus slag can be used as the cement substitute for potential coagulation property. Quicklime, hydrated lime, and other alkaline substances can eliminate the high residual phosphorus to improve the initial strength of backfilling body. The recommended proportions (mass ratio) are 1:1 (yellow phosphorus slag:phosphorous gypsum), 1:4:10 (Portland cement: yellow phosphorus slag:phosphorous gypsum), and 1:4:10 (ultrafine powder:yellow phosphorus slag:phosphorous gypsum) with 5wt% of hydrated lime addition, 60wt% of solid materials, no fly ash addition, and good rheological properties. The hydration reaction involves hydration stage, solidifying stage, and strength stage with Ca(OH)2 as the activating agent. The reaction rates of yellow phosphorus slag, Portland cement, and ultrafine powder hydration with the increase of microstructure stability and initial strength.  相似文献   

13.
为了设计合理的转炉渣成分以达到满意的脱磷效果,根据转炉炼钢过程熔渣成分的变化范围,采用拉曼光谱测定了CaO-SiO2-FexO-P2O5系熔渣的熔体结构,并解析了磷在熔渣中的存在形式及转变行为.结果表明,熔渣中磷主要以桥氧数为0,1,2的磷氧四面体结构单元存在,并可进入硅氧四面体和铁氧四面体形成Si—O—P和Fe—O—P键.随着渣中CaO和FeO总量的增加,熔渣中聚合程度较低的Q0(P),Q1(P)和Q0(Si),Q1(Si)摩尔分数升高,而聚合程度较高的Q2(P)和Q2(Si),Q3(Si)摩尔分数降低.另外,Fe—O—P和Si—O—P键的含量也逐渐降低,当碱度为2.83时,Si—O—P和Fe—O—P键消失.  相似文献   

14.
通过考察不同温度下CaO-SiO2-FetO-P2O5熔渣中磷在2CaO·SiO2颗粒内部和表面以及熔渣本体中的浓度分布规律,对CaO-SiO2-FetO-P2O5熔渣中磷的富集行为进行了研究.结果表明:熔渣中存在的2CaO·SiO2固体颗粒为渣中磷富集提供了场所,磷向2CaO·SiO2颗粒富集并形成2CaO·SiO2...  相似文献   

15.
Comprehensive utilization of pyrite cinders is increasingly important because of their huge annual outputs and potential valuable metals recovery to cope with the gradual depletion of high-grade mineral resources. In this work, a new process, i.e., a high-temperature chlorination-magnetizing roasting-magnetic separation process, was proposed for recovering Fe and removing Zn, Pb from a low-grade pyrite cinder containing 49.90wt% Fe, 1.23wt% Zn, and 0.29wt% Pb. Various parameters, including the chlorinating conditions (dosage of CaCl2, temperature, and time) and the magnetization roasting conditions (amount of coal, temperature, and time) were investigated. The results indicate that the proposed process is effective for Fe recovery and Zn, Pb removal from the pyrite cinder. Through this process, 97.06% Zn, 96.82% Pb, and approximately 90% S can be removed, and 89.74% Fe is recovered as magnetite into the final product under optimal conditions. A purified magnetite concentrate containing 63.07wt% Fe, 0.16wt% P, 0.26wt% S, and trace amounts of nonferrous metals (0.005wt% Cu, 0.013wt% Pb, and 0.051wt% Zn) was obtained. The concentrate can be potentially used as a high-quality feed material for producing oxidized pellets by blending with other high-grade iron ore concentrates.  相似文献   

16.
Reverse flotation studies on magnetite samples have revealed that the use of starch as a depressant of Fe-oxides has a hydrophilic effect on the surface of Fe-bearing silicates and significantly decreases Fe in the silica-rich stream when used in combination with an amine (Lilaflot D817M). In this study, the effect of reverse flotation on the optimization of products obtained from magnetic separation was investigated. Two different magnetic samples, zones 1 and 2, were milled to <75 μm and then subjected to low intensity magnetic separation (LIMS). The LIMS test conducted on the <75 μm shown an upgrade of 46.40wt% Fe, 28.40wt% SiO2 and 2.61wt% MnO for zone 1 and 47.60wt% Fe, 29.17wt% SiO2 and 0.50wt% MnO for zone 2. Further milling of the ore to <25 μm resulted in a higher magnetic-rich product after magnetic separation. Reverse flotation tests were conducted on the agitated magnetic concentrate feed, and the result shows a significant upgrade of Fe compared to that obtained from the non-agitated feed. Iron concentrations greater than 69%, and SiO2 concentrations less than 2% with overall magnetite recoveries greater than 67% and 71% were obtained for zones 1 and 2, respectively.  相似文献   

17.
In this work, a systematic investigation was performed on the structural, mechanical and corrosion properties of CNT incorporated 304 stainless steel. Various concentrations of CNT from 0.5 to 4 wt% were incorporated into the 304 stainless steel matrix to investigate the feasibility of fabrication and enhancement of strength and other material properties. The fabrication of CNT-steel composite was achieved through a spark plasma sintering process at a sintering temperature of 800℃. Raman and morphological studies confirmed that the CNT structure was retained in the sintered pellets. Optimum performance was found at 0.5 wt% CNT giving a Vickers hardness of 351 Hv and compressive yield strength of 404 MPa which were 5.5 and 2.0 times, respectively, those of pristine steel. Corrosion studies with 3.5 wt% Na Cl solution revealed a slight increase in the corrosion rate for CNT dispersed samples.  相似文献   

18.
To effectively reuse high-titanium blast furnace slag (TS), foam glass-ceramics were successfully prepared by powder sintering at 1000℃. TS and waste glass were used as the main raw materials, aluminium nitride (AlN) as the foaming agent, and borax as the fluxing agent. The influence of the amount of AlN added (1wt%–5wt%) on the crystalline phases, microstructure, and properties of the produced foam glass-ceramics was studied. The results showed that the main crystal phases were perovskite, diopside, and augite. With increasing AlN content, a transformation from diopside to augite occurred and the crystallinity of the pyroxene phases slightly decreased. Initially, the average pore size and porosity of the foam glass-ceramics increased and subsequently decreased; similarly, their bulk density and compressive strength decreased and subsequently increased. The optimal properties were obtained when the foam glass-ceramics were prepared by adding 4wt% AlN.  相似文献   

19.
The oxidation pathway and kinetics of titania slag powders in air were analyzed using differential scanning calorimetry (DSC) andthermogravimetry (TG). The oxidation pathway of titania slag powder in air was divided into three stages according to their three exothermic peaks and three corresponding mass gain stages indicated by the respective non-isothermal DSC and TG curves. The isothermal oxidation kin-etics of high titania slag powders of different sizes were analyzed using the ln-ln analysis method. The results revealed that the entire isotherm-al oxidation process comprises two stages. The kinetic mechanism of the first stage can be described as f (α)=1.77 (1?α) [?ln (1?α)](1.77?1)/1.77 , f (α)=1.97 (1?α) [?ln (1?α)](1.97?1)/1.97 , and f (α)=1.18 (1?α) [?ln (1?α)](1.18?1)/1.18 . The kinetic mechanism of the second stage for all samples can be described as f (α)=1.5(1?α)2/3[1?(1?α)1/3]?1 . The activation energies of titania slag powders with different sizes (d1 < 0.075 mm, 0.125 mm < d2 < 0.150 mm, and 0.425 mm < d3 < 0.600 mm) for different reaction degrees were calculated. For the given experimental conditions, the rate-controlling step in the first oxidation stage of all the samples is a chemical reaction. The rate-controlling steps of the second oxidation stage are a chemical reaction and internal diffusion (for powders d1 < 0.075 mm) and internal diffusion (for powders 0.125 mm < d2 <0.150 mm and 0.425 mm < d3 < 0.600 mm).  相似文献   

20.
Induction hardening of dense Fe-Cr/Mo alloys processed via the powder-metallurgy route was studied. The Fe-3Cr-0.5Mo, Fe-1.5Cr-0.2Mo, and Fe-0.85Mo pre-alloyed powders were mixed with 0.4wt%, 0.6wt%, and 0.8wt% C and compacted at 500, 600, and 700 MPa, respectively. The compacts were sintered at 1473 K for 1 h and then cooled at 6 K/min. Ferrite with pearlite was mostly observed in the sintered alloys with 0.4wt% C, whereas a carbide network was also present in the alloys with 0.8wt% C. Graphite at prior particle boundaries led to deterioration of the mechanical properties of alloys with 0.8wt% C, whereas no significant induction hardening was achieved in alloys with 0.4wt% C. Among the investigated samples, alloys with 0.6wt% C exhibited the highest strength and ductility and were found to be suitable for induction hardening. The hardening was carried out at a frequency of 2.0 kHz for 2-3 s. A case depth of 2.5 mm was achieved while maintaining the bulk (interior) hardness of approximately HV 230. A martensitic structure was observed on the outer periphery of the samples. The hardness varied from HV 600 to HV 375 from the sample surface to the interior of the case hardened region. The best combination of properties and hardening depth was achieved in case of the Fe-1.5Cr-0.2Mo alloy with 0.6wt% C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号