首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
在超燃冲压发动机扩张型燃烧室中,对凹腔内局部补氧的点火强化方法进行了试验研究。采用高速摄影手段研究了不同的补氧方式对凹腔内火焰分布特征和燃烧强度的影响,并针对并联双凹腔燃烧室构型,研究了在单侧凹腔补氧条件下向异侧凹腔的火焰传播过程。试验结果表明,采用凹腔内补氧的方式能调节凹腔内的燃料浓度分布、改善凹腔内的燃烧过程,控制燃烧放热强度;稳态燃烧情况下,观察到凹腔驻留火焰的两种存在特征,分别表现为:由回流区热量反馈机制作用下的凹腔局部驻留火焰和燃烧室全局压力反馈影响下的凹腔剪切层火焰。只有在单侧凹腔燃烧建立了全局压力反馈的条件下才能实现凹腔火焰的异侧传播。   相似文献   

2.
以模型超燃冲压发动机为研究对象,该文设计了一种边界层燃烧装置,基于考虑边界层转捩的四方程Transition SST湍流模型,化学反应动力学模型采用9组分27步反应的氢气/氧气反应模型,对边界层燃烧在超燃冲压发动机内的摩擦减阻特性进行数值模拟研究.结果 表明:引入边界层燃烧可以使超燃冲压发动机燃烧室壁面摩擦阻力得到大幅...  相似文献   

3.
固体火箭发动机喷口参数的数值计算   总被引:1,自引:1,他引:1  
采用高精度数值分析格式,对二维轴对称、粘性、湍流流动方程进行研究。通过对固体火箭发动机喷管内流动的数值模拟,得到发动机喷口截面上的静温、静压和马赫数等流动参数。数值计算的入流边界条件分别设定为发动机燃烧室燃气的质量流量和总压,2种边界条件下的计算结果相比较差异不大,计算结果与试验测试结果的相对误差较小。通过理论计算与试验的比较,表明该研究方法具有切实可行的工程应用价值。  相似文献   

4.
快速高效的准一维计算是超燃冲压发动机设计的重要研究方法。该文发展建立了适用于气态或液态燃料、包含隔离段结构、跨声速工况的准一维通用计算模型。该模型以Euler方程组作为基本控制方程,综合考虑了燃烧室截面面积变化、液态燃料蒸发相变、燃料质量添加、摩擦力项以及隔离段内斜激波串结构对流动的影响等因素。依次以NAL氢燃料发动机实验、气态煤油燃料发动机实验和液态煤油燃料发动机实验等3个不同燃料实验作为验证算例对模型进行考核,计算结果与实验数据均吻合良好,验证了模型的有效性和准确性。该模型可进一步应用于各类燃料的超燃冲压发动机燃烧室结构及工作参数的设计与优化等研究工作。  相似文献   

5.
壅塞可调固体火箭冲压发动机性能计算   总被引:2,自引:0,他引:2  
综合给出了二维超声速进气道特性,并将其应用于壅塞可调固体火箭冲压发动机性能计算中,建立了壅塞可调固体火箭冲压发动机特性计算方法.通过调节燃气发生器喷管喉道面积保持给定空燃比不变.根据飞行速度/高度计算出了发动机非设计点性能和相应的燃气发生器喉道面积变化规律.结果表明,飞行速度/高度对燃气发生器喉道面积调节计划产生相当大的影响;当飞行高度低于设计高度时,高度变化明显改变进气道-发动机匹配工作点,高空低马赫数飞行时,进气道位于严重亚临界工作状态,明显降低了超声速进气道稳定工作范围.  相似文献   

6.
纯净空气液态煤油超声速燃烧室性能研究   总被引:1,自引:0,他引:1       下载免费PDF全文
液态煤油高热值、高密度,还容易储存、便于携带,在飞行Ma数小于8的飞行条件下,煤油是超燃冲压发动机的理想燃料,如何实现煤油在超声速燃烧室中稳定燃烧是关键。本文在西北工业大学电阻加热超燃冲压发动机实验台上,针对给定的燃烧室,对以航空煤油为燃料的超声速燃烧冲压发动机燃烧室性能进行初步试验研究。实验来流空气总温为870-930 K,总压保持在77 kPa左右,燃烧室进口Ma数为2。同时结合CFD模拟,对3个不同油气比下燃烧室性能参数进行了对比分析。研究结果认为:要成功地实验煤油点火并稳定燃烧,成功设计凹槽及分布位置是关键;选择合适的油气比,可在提高燃烧室性能的同时保持隔离段的抗扰动能力。  相似文献   

7.
RBCC发动机亚燃模态热环境分析   总被引:1,自引:0,他引:1  
袁双 《科学技术与工程》2012,12(5):1085-1089
针对RBCC(火箭基组合循环)发动机的亚燃模态,通过三维数值模拟计算分析了不同的工况下RBCC发动机中的受热情况,得到热载荷分布。其中一次火箭、小支板尾端、凹腔出口受热最为严重。计算发现一次火箭的流量越大,对流换热系数越大。支板壁喷会产生二氧化碳剪切层,影响燃烧效率,但是会降低热流密度。通过较为系统的热力分析,为RBCC发动机热防护提供一定的设计依据。  相似文献   

8.
为了获得高亚音速飞行条件下引射模态射流壅塞情况、提高引射模态火箭射流引射抽吸能力和发动机性能,本文利用全流道一体化数值模拟方法,针对Ma=0.8飞行状态,研究了在无二次燃烧组织的条件下,主次流总压比对引射空气流量、Fabri壅塞的影响规律,结果表明:在低总压比条件下,提高主次流总压比,可提高火箭射流的引射抽吸能力,引射空气流量增大;随着总压比的进一步提高,欠膨胀的火箭射流超声速势核区会挤压引射空气流道,冲压燃烧室反压前传导致引射空气流量降低;主次流总压比高于350,火箭射流会将引射空气流道堵塞,产生Fabri壅塞,引射空气流量降低为零。  相似文献   

9.
本文基于一台四冲程单缸发动机开展了不同压缩比对湍流射流点火(TJI)汽油发动机性能和爆震特性的影响研究,试验所采用的压缩比为9、11、13和15,在每个压缩比工况下对不同过量空气系数λ进行研究.结果表明,高压缩比可以拓展湍流射流点火汽油发动机的稀燃极限,压缩比15工况下,可以实现λ=3稳定燃烧.增大压缩比并配合预燃室喷油可缩短发动机燃烧的滞燃期和燃烧持续期,进而提高射流点火发动机燃烧效率.1.4<λ<1.9时,随着过量空气系数增加,主燃烧室内混合气变稀,滞燃期和燃烧持续期在低压缩比工况(CR=9、11、13)呈上升趋势,此时主燃烧室混合气浓度对燃烧过程的影响占主导作用;但是随着压缩比逐渐升高至15,滞燃期和燃烧持续期的上升趋势不再明显;而当λ>1.9时,主燃烧室混合气过于稀薄,此时预燃室射流火焰对主燃室燃烧的影响增强.试验还发现,射流点火发动机和普通火花塞点火发动机在压力振荡方面存在较大差异,射流点火发动机的压力振荡从燃烧初期阶段开始一直持续到燃烧结束,这主要是由于高温射流对主燃室多点点火造成的压力振荡.在高压缩比和较浓混合气工况下,射流点火发动机可能还会发生早燃,因...  相似文献   

10.
针对燃烧加热地面试验设备存在的工质污染问题,采用数值模拟方法研究了燃烧加热污染空气对氢燃料超燃冲压发动机性能的影响。以飞行马赫数Ma=6.5,当量油气比ER=0.6为计算基准状态,分别对纯净空气和污染空气来流下氢燃料超燃冲压发动机的整机流场和性能进行了对比计算分析。燃烧化学反应模拟采用了改进的H2/O2七组分八方程模型,湍流模型为标准的 k-ε模型,并采用直连式燃烧室试验数据进行了数值方法的验证。研究结果表明:(1)相对于纯净空气来流,污染空气来流下的超燃冲压发动机推力和比冲均有所下降。(2)采用酒精燃烧加热器的前提下,来流参数匹配静温、静压、马赫数时,发动机性能与纯净空气来流下的结果最为接近,而匹配总温、总压、马赫数时相差最大。(3)来流参数匹配总焓、静压、马赫数的前提下,采用氢燃烧加热器时发动机性能与纯净空气来流下的结果最为接近,而采用甲烷燃烧加热器时相差最大。   相似文献   

11.
AVC预混燃烧流动特性的数值模拟   总被引:1,自引:0,他引:1  
孙海俊 《科学技术与工程》2013,13(17):4843-4848
为探究先进旋涡燃烧室内湍流燃烧流动特性,应用预混燃烧模型,对燃烧室内燃烧及流动过程进行了数值模拟。得到了燃烧室内温度场及流场的分布情况。分析了不同燃气当量比、燃气速度和燃气温度对燃烧室预混燃烧流动的影响规律。结果表明:燃烧室内凹腔及后钝体回流区是主要燃烧区域,主燃区可形成均匀对称的旋涡对;不同工况参数对燃烧室内温度、组分和流场分布有影响。凹腔内温度随进气速度增大而增加,燃烧室内温度和出口径向温度随燃气温度增大而增大,且在不同工况下,凹腔内都能维持较高的点火温度。  相似文献   

12.
超燃冲压发动机结构简单,推重比大,应用前景广阔.但其流场结构十分复杂,研究超燃冲压发动机三维流场结构具有重要的意义.采用计算流体力学软件对某超燃冲压发动机尾喷管的三维流场进行数值模拟,先后得到了流场的密度、马赫数、涡量及速度矢量线图.结果表明:喷管内及侧壁面出口处存在膨胀波.各个壁面出口处附近的流场存在羽流激波和剪切层,内喷管出口周围的羽流激波和剪切层呈环状分布在流场周围,上壁面尾部受羽流激波的影响产生一道由压强决定的管内斜激波.内喷管出口及上壁面尾部处也均存在流向涡结构.  相似文献   

13.
针对某航空发动机在服役过程中出现的燃烧室基体开裂现象,研究了航空发动机的燃烧室热疲劳。通过三坐标扫描逆向建模获得了航空发动机的燃烧室三维模型,选取满足周期性对称条件的1/10扇形段燃烧室作为计算域,考虑流体域与固体域之间的相互作用,建立了某航空发动机燃烧室湍流燃烧流固耦合模型,对典型工况下燃烧室内流场进行了模拟,获得了燃烧室基体及热障涂层的温度分布,并对热障涂层外表面温度场与实际服役燃烧室热障涂层宏观样貌进行对比,验证了流固耦合计算的准确性;对燃烧室基体进行了非线性静力学分析,获得了燃烧室基体的应变分布,应变最大位置与燃烧室基体实际开裂位置对应;通过Manson-Coffin公式及线性累积损伤理论,计算得到了在典型工作循环下危险点的寿命。结果表明,随着发动机负荷的上升,燃烧室基体温度逐渐升高,在冷热气流的冲击下,掺混孔下游区域温度分布不均匀,使得该区域塑性应变较大从而导致掺混孔区域的低周疲劳破坏,危险点的最低寿命典型起落循环数为7 126。  相似文献   

14.
对带凹腔结构的燃烧室二维甲烷燃烧流场进行数值模拟,采用迎风三阶精度MUSCL格式求解二维含组分守恒N-S方程,湍流模型采用剪切修正的RNG k-ε湍流模型,分别分析了凹腔不同长深比和导流槽结构对燃料燃烧的影响.对喷甲烷燃烧工况进行了计算研究,结果表明:凹腔可以提高燃烧效率,却使总压恢复系数降低;凹腔的长深比越大,燃烧效率越高,总压恢复系数越低;导流槽可以在总压恢复系数较高的情况下进一步提高燃烧效率.  相似文献   

15.
基于航空发动机红外辐射特性数值仿真的需求,建立涡扇发动机部件的几何模型,利用数值模拟结合实验验证的方法对涡轮后内外流场及壁面温度场进行研究。比较模型与常用模型的计算结果可得出:受发动机部件几何型面及安装特点影响,发动机喷管前的内部流场及壁面温度场都成明显的周期分布。壁面温度分布形态主要受波瓣混合器影响,但加力部件使高温区域面积减小,使壁面温度分布更快进入轴对称状态。加力部件降低了发动机内部的速度分布均匀度;同时也使截面参数分布更均匀。当采用环形混合器时,流向截面上流向涡尺寸大、强度小、温度掺混情况差。  相似文献   

16.
为减少NO_x等污染物的排放,现代燃气轮机多采用贫油预混燃烧技术,由此产生较为突出的燃烧振荡与燃烧室结构疲劳问题。应用有限元软件建立燃烧室数值模型优化燃烧室模型网格;对比分析进气速度対数值模拟结果的影响;运用单向耦合与双向耦合方法计算分析了燃烧室热-声-耦合特性。研究表明:网格质量在一定程度上影响计算精度,进气速度对数值模拟结果影响较大;相对于声压载荷,热载荷对结构固有频率和振型影响较大,特别是在高频段;双向耦合较单向耦合数值模拟结果与实际情况更为接近。热-声-固耦合分析方法对发动机燃烧震荡机理研究及其抗热-声-固耦合疲劳设计具有应用参考价值。  相似文献   

17.
使用参考面移动法分析非轴对称腔的特性   总被引:1,自引:0,他引:1  
使用移动参考面方法,将非轴对称腔的矩阵理论推广用于包括B≠B^T情况。对非轴对称环形腔作了数值计算以说明方法的应用。  相似文献   

18.
冯钦  林智  邵博  王纪林 《科学技术与工程》2022,22(17):7197-7205
为研究固体火箭冲压发动机性能,采用计算流体力学方法对包含进气道及补燃室的一体化燃烧流场进行数值分析,研究可燃燃气进口条件、飞行攻角以及进气道与补燃室过渡连接方案对补燃室掺混燃烧的影响。研究结果表明:燃气流量为0.08Kg/s时,燃气射流出现偏移,补燃室两侧壁面温度相差较大,燃气流量为0.3Kg/s时,燃气偏移现象基本消失;随着燃气流量增大,发动机推力增加;攻角增大使得进气道流量系数增大,强化空气与燃气混合燃烧效果,并最终提升发动机推力。进气道与补燃室的过渡连接方式影响进气角度,本课题通过改变过渡连接方式将进气角度从50°增加至90°后,燃气流量为0.3Kg/s时,发动机推力提高10%,但会导致补燃室总压损失增大,发动机比冲降低2%。  相似文献   

19.
为了考核贮存××年的液体火箭发动机的性能 ,进行了液体火箭发动机热试车的研究 .实验采用了NEFF62 0实时全数字采集系统 ,得到了在启动段、平稳段、关机段燃烧室的压力、推力、推进剂流量及压调器、稳定器出口压力等主要参数随时间变化的曲线 .对实验结果分析表明 :3次热试车数据在启动段都具有很好的一致性 ,贮存××年后的发动机仍具有良好的启动特性 ;关机段各参数的特征变化曲线非常接近 ,各参数在得到予令关机信号后都能迅速转入末级工作状态 ,并存在明显的“平台”效应 ,仍然具有良好的运载精度 ;压调器和稳定器都具有很好的调节性能 ,能满足发动机正常工作状态下的要求 .得出的结论对发动机的性能考核、设计、理论研究和数值计算都具有实际意义和参考价值  相似文献   

20.
采用Realizable k-ε湍流模型、涡耗散燃烧模型,应用Fluent软件UDF功能,编写含铝颗粒的HTPB(端羟基聚丁二烯)热解和铝颗粒点火燃烧模型的UDF程序,计算含铝固体燃料冲压发动机内两相湍流流动燃烧,研究不同来流条件下,HTPB中铝颗粒含量和铝颗粒直径对固体燃料冲压发动机平均燃速的影响规律.计算结果表明,含铝HTPB的固体燃料冲压发动机推进剂平均燃速随着来流空气质量流量、来流空气总温的增加而增大,但随着铝颗粒含量的增大先增后减,随着铝颗粒直径的增大而减小;对平均燃速的影响程度由强到弱依次为来流空气质量流量、铝颗粒含量、来流空气总温以及铝颗粒直径,而来流空气总温、铝颗粒含量以及铝颗粒直径三个因素对平均燃速的影响程度接近.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号