首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
系统研究了硫酸盐对掺聚羧酸减水剂水泥浆体流变性及水化性能的影响.结果表明:硫酸盐降低了聚羧酸减水剂在水泥颗粒表面的吸附量,削弱了聚羧酸减水剂对水泥浆体的分散作用.随着硫酸盐掺量的增加,聚羧酸减水剂分散性能下降.少量硫酸盐延缓了水化加速期最大水化放热速率峰的出现,并且提高了最大水化放热速率.而大量硫酸盐则使得水泥水化诱导期缩短,最大水化速率峰显著提前.大量硫酸盐的加入促进了水泥浆体中钙矾石(AFt)的生成,削弱了水化铝酸钙(CAH)的生成.MgSO4对于水泥浆体中水化产物生成的促进作用最明显.掺加MgSO4的水泥水化产物中含有大量细丝状水化硫铝酸盐产物.MgSO4对水泥水化具有显著延缓作用,水化产物结晶成核作用较缓慢,从而使得水化产物生成及分布更加均匀,形状更加细小.  相似文献   

2.
聚羟酸减水剂掺量对水泥砂浆干燥收缩的影响   总被引:1,自引:1,他引:0       下载免费PDF全文
研究了聚羧酸减水剂掺量对水泥砂浆强度、干燥收缩的影响。试验结果表明当聚羧酸减水剂掺量从0.15%增加到0.27%时:水泥砂浆的1 d抗压强度、1 d抗折强度分别增加10.6%、6.3%;水泥砂浆的1 d、60 d干燥收缩应变分别减少12.4%、5.4%。得到了水泥砂浆干燥收缩应变与聚羧酸减水剂掺量间的关系式。  相似文献   

3.
聚羧酸减水剂对水泥水化过程的影响   总被引:1,自引:0,他引:1  
从水泥浆的液相电导率、pH值和水化程度三方面讨论了聚羧酸共聚物对水泥水化的影响.研究结果表明,共聚物对水泥的水化过程有缓凝作用.共聚物的掺量(即聚灰比)越大其缓凝作用越明显,且在其它配方相同时,侧链聚乙二醇(PEG)的分子量不同,对缓凝作用也有影响,掺入的PEG分子量越大缓凝作用越明显.此外,还利用傅里叶变换红外光谱法验证了聚羧酸共聚物与水泥水化产生的钙离子会发生配位反应,并分析了聚羧酸减水剂对水泥水化的影响机理.  相似文献   

4.
通过水溶液自由基聚合法合成了含有不同官能团的聚羧酸减水剂,并研究了不同结构聚羧酸减水剂的吸附-分散性能,以及其对水泥水化性能的影响.结果表明:含酰胺基的聚羧酸减水剂对水泥浆体流动度的削弱程度最大,含酯基官能团的聚羧酸减水剂对水泥浆体流动度的影响程度较小.含磺酸基团的聚羧酸减水剂吸附性能增强;而含酰胺基及酯基的聚羧酸减水剂的吸附性能削弱.含酯基官能团的聚羧酸减水剂显著延缓了水泥水化诱导期,相比之下,含磺酸基官能团的聚羧酸减水剂提高了水泥水化加速期的最大水化放热速率.  相似文献   

5.
目的考察聚羧酸系减水剂对水泥水化作用及微观结构的影响。方法借助净浆水泥凝结时间、水化放热曲线、扫描电镜(SEM)观测、孔隙率和孔径分布测定等手段。结果掺加一定量减水剂,可使水泥凝结时间延迟;体系最高温度降低了8.6℃,时间推迟17 h;使水泥早期微小晶体大量生长,气孔细化且分布更加合理。结论XYZ系列减水剂具有缓凝特性,能够显著延缓水泥水化的放热;可使水泥石的后期水化更充分,水化产物结构更紧密。  相似文献   

6.
测定不同磨细钡渣掺量下水泥-钡渣体系的抗折强度、抗压强度和水化热,结合X射线衍射(XRD)和扫描电子显微镜(SEM)技术,分析磨细钡渣掺量对普通硅酸盐水泥水化历程的影响规律,探讨磨细钡渣资源化利用的技术方案。结果表明:随钡渣掺量的增加,水泥-钡渣浆体强度逐渐下降水化放热推迟,水化温峰消弱;由于稀释作用,钡渣抑制普通硅酸盐水泥1 d水化产物中钙矾石(AFt)和氢氧化钙(CH)的形成;钡渣中引入的大量可溶性SO2-4,使7 d水化产物中出AFt及石膏增加,当掺量质量分数达50%时,出现大量结晶较好的石膏晶体;磨细钡渣不具备较好的一次水化活性,可作为混合材应用于水泥工业。  相似文献   

7.
利用Box-Behnken实验设计(BBD)方法研究水溶性聚合物(聚乙烯醇(PVA)、聚丙烯酰胺(PAM))和化学添加剂(有机硅消泡剂(SD)、聚羧酸减水剂(PC))复配对水泥砂浆抗压强度的影响,得出能反映化学组分掺量与水泥砂浆强度关系的二次方程、化学组分与水泥砂浆强度的帕累托图(Parrot)。结果表明:聚乙烯醇对水泥1 d砂浆强度的贡献最大,随着龄期的增长,作用逐渐减小。聚丙烯酰胺对强度的影响主要体现在28 d,聚羧酸减水剂的作用主要体现在3 d。此外,有机硅消泡剂和聚丙烯酰胺的交互作用存在于整个水化过程中,而有机硅消泡剂和聚羧酸减水剂的交互作用主要体现在3 d前。  相似文献   

8.
采用水溶液自由基共聚的方法合成聚羧酸高效减水剂, 并通过红外光谱确定了聚羧酸高效减水剂的结构, 考察了聚羧酸高效减水剂侧链的长度、
减水剂在水泥中的掺量、 测试温度等对水泥净浆流动度的影响. 结果表明: 长侧链比短侧链的减水剂流动性更好; 减水剂在水泥中的掺量为其质量分数的0.2%; 随测试温度的升高, 水泥净浆流动度反而降低. 将新合成的聚羧酸高效减水剂与国内外常用产品进行比较, 结果显示性质优良.  相似文献   

9.
目的研究骨料中的泥对聚羧酸减水剂(PCE)分散作用的影响,并合成聚合物降低泥对聚羧酸减水剂的分散作用.方法以丙烯酰胺(AM)为单体,过硫酸铵(APS)为引发剂、甲基丙烯磺酸钠(SMAS)为链转移剂,合成一种低分子量的丙烯酰胺聚合物(PAM),并测试了不同含泥条件下水泥对聚羧酸减水剂的吸附量以及水泥的流动度,确定PAM的合理配比.结果自制的聚丙烯酰胺可明显改善泥对减水剂吸附,在细骨料含泥质量分数为5%、减水剂掺量为0.3%、水灰质量比为0.29条件下,PAM的最佳掺量为1.2%,泥对聚羧酸减水剂的影响可明显降低.结论泥与水泥相比对聚羧酸减水剂的吸附量较大,蒙脱石对于PCE的吸附导致减水剂失效;PAM与PCE之间存在吸附竞争,PAM可优先吸附,有利于水泥流动度的改善.  相似文献   

10.
文章以聚羧酸减水剂掺量为变化参数,研究了早强型套筒灌浆料的流动度、竖向膨胀率以及抗压强度随减水剂掺量的变化情况,研究结果表明:随着减水剂掺量的增加,灌浆料的流动度先增大后呈减小的趋势;灌浆料的3h竖向膨胀率随减水剂掺量的增加逐渐降低,而24 h竖向膨胀率基本保持不变;减水剂掺量对硬化浆体的抗压强度影响不显著.  相似文献   

11.
从氯离子等温吸附、吸附动力学及吸附热力学3个方面,研究聚羧酸减水剂对水泥浆结合氯离子性能的影响,同时应用XRD微观测试技术研究其作用机理。结果表明:掺入聚羧酸减水剂使水泥浆体结合氯离子能力减弱,且水灰比越小,这种影响作用则越大;掺入聚羧酸减水剂的水泥浆体对氯离子的固化过程,短期内符合准一级动力学方程,表现为物理吸附,长期内符合准二级动力学方程,表现为化学结合,其中随着聚羧酸减水剂掺量的增大,吸附速率逐渐减小;聚羧酸减水剂使水泥浆结合氯离子过程中的自由能变、焓变和熵变都减小,且这个过程是自发、放热的;掺入聚羧酸减水剂主要影响水泥浆体对氯离子的物理吸附,对化学结合没有明显影响。  相似文献   

12.
应用恒温导热法等研究了道路水泥的水化动力学过程以及CaO、石膏对其水化过程和性能的影响。研究结果表明,与硅酸盐水泥、普通硅酸盐水泥相比,道路水泥由于其特有的矿物组成,尽管早期水化放热速率和水化放热量较低,但早期强度较高,而且具有初凝时间较长,初、终凝时间间隔较短、耐磨、抗干缩等性能,能较好地适应道路建筑工程需要。道路水泥在不同水化阶段具有不同的反应机理,所适用的动力学公式及动力学参数也不同,外掺CaO可使其水化减速期动力学过程得以改变,但掺入少量CaO对道路水泥的性能影响不大。  相似文献   

13.
高性能胶凝材料主要用于高性能混凝土,具有强度高、需水量小、水化垫低和收缩小等特点。按掺高效减水剂的胶凝材料的流变性能来优化石膏的掺量是高性能胶凝材料的特有技术之一。试验研究了石膏的掺量对高性能胶凝材料的需水量、凝结时间、强度、收缩性的影响,以此作为优化石膏掺量的依据。  相似文献   

14.
研究了水灰比分别为0.3,0.4和0.5的硅酸盐水泥浆体在3d龄期内的化学收缩与电阻率的变化规律,并根据非蒸发水含量计算了水泥的水化度,讨论了化学收缩与水化度之间的关系以及电阻率与水化度之间的关系.化学收缩采用ASTM C1608—07规定的膨胀测定法进行测试,电阻率采用无接触电阻率法进行测试.结果表明:水泥浆体的化学收缩与水泥的水化度之间具有较好的线性关系;对于不同水灰比的水泥浆体,当龄期在12h以上时,化学收缩与电阻率之间存在较好的线性关系,可以根据电阻率计算水泥的水化度和化学收缩.  相似文献   

15.
选取木钠、萘系以及聚羧酸系减水剂,利用 XRD、SEM等测试手段,通过对水泥净浆流动性、凝结时间和强度等宏观性能的研究,分别比较粗集料中的含泥量对其性能的影响规律。结果表明,泥土的掺入缩短了含有 3 种减水剂的水泥净浆的初凝和终凝的时间,且随着含泥量(0% ~ 8%)的增加均呈下降趋势;初始流动度和 1 h 流动度随着含泥量的增加而减小。其中,泥土对聚羧酸减水剂的影响最为明显;含泥量在较小范围之内(w<2%),在一定程度上可以提高净浆试块的 7 d 强度。  相似文献   

16.
采用水溶液聚合法,将烯丙基聚乙二醇(APEG)与丙烯酸(AA)、丙烯酰胺(AM)、甲基丙烯磺酸钠(MAS)共聚合成聚羧酸系减水剂,探讨了AA与APEG的摩尔比、AM与APEG的摩尔比、MAS与APEG的摩尔比、反应浓度、加料方式、引发剂用量(相对于所有单体质量和的百分比)、共聚温度和反应时间对所合成聚羧酸系减水剂性能的影响.结果表明:采用最佳合成工艺参数制备的减水剂在掺量仅为水泥用量的0.8%(质量分数)时就具有良好的减水率、保坍性.  相似文献   

17.
通过强度试验、干缩测定、MIP、TG-DSC、NMR分析,研究了不同水热条件下硅酸盐水泥的早期(3 d)水化及其干缩性能。结果表明:约2 d时间的水养护温度由20℃提高到60℃,水泥的早期(3 d)水化程度显著提高,C-S-H凝胶数量显著增多,同时C-S-H凝胶的硅酸盐聚合度提高,C-S-H的表面积减小,致密度提高;水泥的3 d强度显著提高,但28 d强度明显下降;水泥的干缩显著减小。养护温度提高减小干缩的原因是由于干燥前C-S-H凝胶的化学结构等发生变化而使水泥的不可逆干缩显著减小。  相似文献   

18.
以净浆流动度作为水泥与减水剂相容性的评价指标,试验研究了多种助磨剂对水泥与萘系减水剂或聚羧酸减水剂相容性的影响规律,探讨了缓凝剂和引气剂对水泥与减水剂相容性的改善作用。结果表明,助磨剂对水泥与萘系减水剂相容性的影响较大,对水泥与聚羧酸减水剂相容性的影响较小。缓凝剂和引气剂均能改善水泥与萘系减水剂的相容性,随其掺加量的增加,改善作用逐渐增大。含缓凝剂/引气剂的复合助磨剂对水泥净浆流动度有一定的改善作用,并延缓水泥的凝结时间。含缓凝剂的复合助磨剂对水泥有增强作用,而含引气剂的复合助磨剂会降低水泥的胶砂强度。  相似文献   

19.
为了研究碳酸锂(Li2CO3)和超细矿物掺合料(UMA)对快硬硫铝酸盐水泥(R·SAC)性能的影响。以凝结时间和力学性能为宏观指标,X射线衍射(X-ray diffraction, XRD)和扫描电子显微镜(scanning electron microscope, SEM)测试为基础,探讨了Li2CO3和UMA对R·SAC凝结时间、力学性能、水化产物种类和微观形貌的影响规律。结果表明:Li2CO3不仅可以有效提高R·SAC主要水化产物钙矾石的生成速率,而且还可以改变其微观形貌,显著缩短R·SAC的凝结时间;Li2CO3虽然改变了R·SAC的水化进程,但对其水化产物的种类并无影响;UMA不仅可以改善R·SAC胶砂界面过渡区力的学性能,而且同样可以有效缩短R·SAC凝结时间,同时对胶砂后期强度倒缩起到补偿作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号