首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 109 毫秒
1.
低温环境下聚磷微生物的富集驯化研究   总被引:1,自引:0,他引:1  
针对低温环境下生物强化除磷工艺的启动与运行,研究了厌氧/好氧和厌氧/缺氧两种模式富集驯化好氧聚磷菌和反硝化聚磷菌的效果.研究表明,以城市污水处理厂活性污泥为接种污泥,在8~11℃的低温环境下能有效完成好氧和反硝化聚磷菌的富集驯化,厌氧/好氧和厌氧/缺氧反应器分别在第40d和第80d达到稳定状态.厌氧/好氧反应器内污泥释磷和吸磷能力强于厌氧/缺氧反应器内污泥,分别为27.7 mg P/g MLVSS,35.2mg P/g MLVSS,17.4mg P/g MLVSS,23.1mg P/g MLVSS.反硝化聚磷菌可以在好氧条件下以氧为电子受体快速吸收磷,而好氧聚磷菌在缺氧环境中以硝酸盐为电子受体立即吸收磷的能力较弱,仅为6.9mgP/gMLVSS,占好氧吸磷的19.6%.厌氧/好氧和厌氧/缺氧两个反应器富集前后聚磷菌(Accumulibacter)的丰度分别由9.3%(接种污泥)增加到79.3%(好氧聚磷菌)和61.6%(反硝化聚磷菌),同样表明了在该低温环境下两个生物强化除磷工艺均实现了Accumulibacter的有效富集.  相似文献   

2.
A 2O-MBR工艺反硝化脱氮除磷研究   总被引:7,自引:0,他引:7  
以自行设计的双反应器A2O-MBR为研究对象.对模拟生活废水的脱氮除磷进行了研究.结果表明:当N、P负荷为0.14和0.3 kg·m-3·d-1时,COD、N、P去除率分别为90.5%、80.6%和67.7%,系统不必外投硝酸盐即可实现反硝化除磷.具有很强的反硝化脱氪除磷能力,反硝化聚磷菌(DPAOs)占总聚磷菌(PAO)的比例和反硝化除磷量占总除磷量的比率分别达70.00%和69.81%;污泥回漉中硝酸盐量超过一定范围会发生对厌氧释磷的抑制.本系统中当进水ρ(COD):ρ(TP)为30:1时,进水COD与回流污泥硝酸盐的比例应高于30:1.采用问歇抽吸出水有助于延缓膜污染,膜出水不受污泥沉降性的影响.  相似文献   

3.
不同电子受体影响下的反硝化除磷过程   总被引:1,自引:0,他引:1  
为进一步了解反硝化除磷菌的代谢行为,以序批式反应器(SBR)在厌氧/好氧条件下培养的活性污泥为对象,进行批次试验,研究了不同电子受体对反硝化缺氧吸磷的影响.结果证实:只要有电子受体存在,不论是硝氮(NO3--N)还是亚硝氮(NO2--N),缺氧吸磷都会发生,但NO2--N的缺氧吸磷量相对较少;反应开始时的电子受体质量浓度对反应过程影响很大,试验中NO3--N质量浓度为30mg/L、NO2--N质量浓度为20mg/L时吸磷量和吸磷速率均达到最高值;低于该值时,吸磷量和吸磷速率随着电子受体质量浓度的提高而增加;高于该值时,吸磷量和吸磷速率随着电子受体质量浓度的提高而减少;NO2--N质量浓度达80mg/L时,没有发现对反应的抑制作用;好氧吸磷效果好于缺氧吸磷.试验还发现反应器在厌氧/缺氧条件下连续运行时,反硝化除磷菌的厌氧释磷和缺氧吸磷能力将很快丧失.  相似文献   

4.
应用缺扯好氧膜生物反应器(A/OMBR)和缺氧一好氧传统活性污泥法(A/OAS)时模拟的己内酰胺废水进行处理和比较。实验结果表明,在不同的容积负荷下,MBR的出水水质优于AS,高负荷情况下优势更为明显。在静态实验中,MBR中污泥的硝化速率明显高于AS,有机物降解速率和反硝化速率几乎相等。  相似文献   

5.
膜生物反应器净化污水的硝化反硝化性能   总被引:2,自引:0,他引:2  
比较了膜生物反应器(MBR)和传统活性污泥工艺(CAS)在相同运行条件下处理生活污水的硝化和反硝化性能.结果表明,MBR对NH4 -N和TN的去除率分别比CAS高54.8%和37.3%.2种工艺的亚硝化、反硝化作用均呈零级反应,对应降解速率常数MBR分别约为CAS的2.2倍和2.5倍;CAS中硝化作用为零级反应,而MBR中硝化作用随时间推移趋于平缓.MBR中的细菌总数、硝酸菌、亚硝酸菌和反硝化菌数量分别比CAS工艺中相应菌种高1~2个数量级.通过控制曝气强度或减小回流通道断面限制缺氧区溶解氧质量浓度,可提高MBR中的反硝化效果.  相似文献   

6.
采集某城市污水处理厂的A/O工艺回流活性污泥作为污泥样品,利用SBR反应器,以硝酸盐为电子受体,在低碳源下,培养和驯化反硝化除磷菌。第一阶段采用厌氧/好氧/沉淀/排水的运行方式10周期,第二阶段采用厌氧/好氧/缺氧/好氧/沉淀/排水运行方式40周期。反硝化脱氮除磷性能的测试结果表明,经培养驯化得到的反硝化除磷菌处理低碳源废水,PO43--P的去除率达96%,出水浓度稳定在0.4 mg/L以下;NH4+-N去除率达78%,出水浓度稳定在3 mg/L以下;COD的去除率达86%,出水浓度稳定在20 mg/L以下;表明采用SBR反应器进行反硝化菌的培养驯化是可行的。  相似文献   

7.
采用强化除磷反应器,通过厌氧/好氧和厌氧/缺氧过程,分两阶段对硝化菌和反硝化聚磷菌(DNPAOS)进行选择和富集,形成了以二者为优势菌群的同步强化生物除磷脱氮体系。实验结果表明,体系同时存在硝化和反硝化吸磷过程,达到在废水处理过程中同时脱氮除磷的效果,经过58周期的厌氧/缺氧驯化富集,污水氨氮和总磷的去除率分别达到了93%和97%,DNPAOS占总PAOS的48%。  相似文献   

8.
桂林第四污水处理厂A-A/O工艺生物除磷试验研究   总被引:1,自引:0,他引:1  
以桂林第四污水处理厂A A/O工艺处理水为试验对象 ,研究了生物除磷过程中生物厌氧放磷和好氧吸磷的规律。结果表明 ,硝酸盐的浓度≥ 5mg/L对生物除磷有明显抑制作用 ;生物厌氧放磷时间在 4~ 8h外源放磷量呈线性增加 ;曝气吸磷时间在 1~ 3h生物吸磷速率较快 ;厌氧 5h再曝气 2h吸磷量最大 ,且单位污泥最大比吸磷量为 3 .3 5× 1 0 -6,此时的耗氧速率为 0 .1 63mg/L·min。  相似文献   

9.
为了提高焦化废水的处理效果,减轻对环境的污染,选择好氧颗粒污泥膜生物反应器处理人工模拟焦化废水,探讨了不同颗粒污泥浓度对焦化废水的处理效果及膜污染的情况。结果表明,不同颗粒污泥浓度对焦化废水的处理效果有显著差别。投加颗粒污泥后,反应器对不同颗粒污泥浓度条件下COD、NH3-N、苯酚、TP的去除效果不同。好氧颗粒污泥内部缺氧和厌氧环境下,反应器中的好氧颗粒污泥质量分数为100%时对COD去除率为99.17%、NH3-N去除率为95.00%、苯酚去除率为99.90%、TP去除率为85.22%。同时,比较了不同颗粒污泥浓度下反应器运行中膜通量的变化趋势及膜表面的变化情况。颗粒污泥投加量的不同对膜污染的抑制作用也不同。颗粒污泥使膜污染减轻,膜通量恢复率升高。  相似文献   

10.
脱氮除磷膜-生物反应器的除磷效果及特性   总被引:9,自引:0,他引:9  
为了研究在脱氮除磷膜-生物反应器中的除磷效果及特性,主要考察了反应器处理生活污水过程对总磷的稳定去除效果,以及生物生长除磷、反硝化聚磷、好氧聚磷、膜截留除磷等不同除磷途径对除磷的贡献.试验结果表明,该工艺取得了较好且稳定的除磷效果,总磷的平均去除率为92.0%.在脱氮除磷膜-生物反应器中,缺氧区发生的反硝化聚磷占到了生物聚磷总量的34.0%~38.6%,反硝化聚磷得到了强化.此外,膜本身对胶体形态磷有一定的截留作用,对进一步降低出水磷浓度起到了一定作用.  相似文献   

11.
好氧段对反硝化除磷系统的影响   总被引:4,自引:0,他引:4       下载免费PDF全文
生物除磷系统在厌氧/缺氧交替变化的环境中可以发生反硝化除磷现象,通过研究发现:没有好氧段的A/A-SBR系统除磷能力低于有好氧段的A/AO-SBR系统,而且随着运行时间的增加A/A-SBR系统的除磷能力逐渐减弱,污泥产率也从起始的0.22 Gmlss/Gcod d逐渐下降趋于零增长甚至负增长.试验结果表明,设置后好氧段是保证反硝化除磷系统稳定运行的关键.但是,较长的好氧时间将导致NO3-N的积累,并抑制A/AO-SBR系统除磷,而 0.5 h的后好氧时间既可以确保A/AO-SBR反硝化除磷系统的稳定运行又可以获得好的除磷效果.  相似文献   

12.
利用反硝化聚磷菌进行动态与静态相结合的反硝化聚磷试验,研究A^2/O厌氧段聚磷菌的反硝化聚磷特性。研究结果表明,在A^2/O厌氧段中占聚磷菌总数52%的菌具有同步反硝化聚磷的生物学特性。当以NO3^- -N作电子受体进行聚磷时,其硝酸盐浓度应限制在50 mg/L以下,初始硝酸盐浓度越高,反硝化速率和缺氧聚磷速率及去除率越快,系统由聚磷转变为释磷的时间将延后。由于释/聚磷过程都需要碳源,所以,应控制进水的化学耗氧量(COD),以200 mg/L为最佳,使在释磷时有充足的碳源而在聚磷时碳源又较少。pH值对释/聚磷有不同程度的影响,在一定范围内,初始pH值越高,释磷效果越好,但当pH≥8.0时,会引起磷酸盐沉积而导致磷酸根浓度降低,从而无法正确判断释磷和生物聚磷效果,反硝化除磷系统的pH值应控制在7.0-7.5的范围内。  相似文献   

13.
探讨利用膜生物反应器(MBR)处理丁基黄药(简称黄药)废水时的启动期及好氧活性污泥驯化过程的运行特征,分析其好氧活性污泥的形成过程、形态特征、性质及对污染物的去除机制.以啤酒污水处理曝气池污泥为接种污泥,以乙酸钠和黄药为碳源,培养及驯化絮体污泥.结果表明,MBR系统经过35 d启动及驯化即可达到正常运行状态,絮体污泥的SVI为100 mL/g,MLVSS/MLSS为0.75,生物量大且沉降性良好,COD及黄药去除率分别可以达到80%和90%.絮体污泥的形成及膜的高效截留增强了MBR运行的稳定性,为黄药废水的高效降解提供了保证.  相似文献   

14.
 为强化A2/O低温污水处理系统的除磷效能,在好氧工艺段后增设了厌氧释磷池,并对其运行控制参数进行了探讨.研究表明,二沉池好氧污泥的厌氧释磷有效提高了低温A2/O系统的总磷去除率,同时对COD的去除效能也得到了提高.为满足厌氧释磷对碳源的需求,可引入原水与二沉池新鲜污泥以体积比1:1混合,适宜的污泥负荷为0.015-0.02g COD/g MLSS.对于间歇运行工艺,适宜的释磷反应时间为14h,而在连续流工艺中,应控制污泥停留时间为12h.NO3-对好氧污泥的厌氧释磷有显著抑制作用,以不大于5mg/L为宜.为提高污泥厌氧释磷的效率,可采用间歇式缓慢搅拌.  相似文献   

15.
试验考察了SECMBR的膜过滤特性,探讨了电凝聚对控制MBR膜污染的作用及机理.试验结果表明:胞外聚合物(EPS)、溶解性代谢产物(SMP)、ζ电位和污泥颗粒粒径等是膜污染的重要影响因素.SECM BR的膜污染远小于SM BR;SECM BR原位溶出铁离子与EPS结合,絮凝性增强,滤饼层污染减轻;SECM BR中电凝聚可降低单位容积活性污泥分泌的SM P与EPS,减轻膜污染;SECM BR降低EPS和SM P中主要污染物蛋白质的比例,减轻膜污染;ζ电位与Rc之间呈负相关,在SMBR与SECMBR中相关度分别为-0.798 8和-0.557 4.SECM BR在电场与铁粒子作用下降低了ζ电位绝对值,减轻了膜污染.  相似文献   

16.
厌氧反应时间对反硝化聚磷功效及微生物种群的影响   总被引:1,自引:0,他引:1  
采用厌氧/缺氧/好氧序批式反应器(An/A/O-SBR),考察了不同厌氧反应时间(分别为90,120和150min)长期运行条件下的反硝化除磷效果,并利用荧光原位杂交(FISH)技术分析了系统内微生物种群的结构变化.结果发现,厌氧反应时间为90 min系统合成的聚羟基烷酸酯(PHA)量最高,脱氮和除磷平均去除率分别达到92%和93%,聚磷菌占总菌的(58±2.3)%;厌氧反应时间为120 min的系统脱氮和除磷平均去除率分别达到97%和73%,聚磷菌占总菌的(50±2.2)%.而厌氧反应时间为150min的系统合成PHA最低,平均脱氮率仅为79%,聚磷菌数量也减少至(45±2.7)%.厌氧反应时间过长致使PHA含量水平下降,继而发生游离亚硝酸(FNA)的积累,这是导致系统脱氮除磷效率降低的主要原因.  相似文献   

17.
以模拟印染废水为研究对象,考察了ECMBR和MBR系统中的膜污染和污泥混合液特性.结果表明:两系统膜过滤阻力均以沉积阻力为主,MBR和ECMBR中沉积阻力分占总阻力的99%和9334%,但ECMBR总阻力仅为普通MBR污泥总阻力的1/4,电凝聚可有效降低沉积层阻力.对比分析两系统中的混合液特性,ECMBR中污泥平均粒径大,Zeta电位绝对值小,胞外聚合物和溶解性微生物产物浓度低,污泥相对疏水性较高.电凝聚通过改变混合液特性,从而有效改善膜生物反应器过滤性能,增加膜通量,减少膜过滤阻力.  相似文献   

18.
不同曝气强度下MBR污泥混合液可滤性分析   总被引:2,自引:0,他引:2  
研究了曝气强度对膜-生物反应器(MBRs)污泥混合液的可滤性的影响.2套MBRs采用曝气强度分别为500L/h及100L/h恒流出水模式连续运行60d,应用污泥混合液过滤装置测定污泥混合液的可滤性.结果表明:过高的曝气强度将恶化污泥混合液的可滤性,增加膜污染速率;曝气强度的增加将导致污泥混合液上清液中相对分子质量大于10000的溶解性微生物代谢产物(SMP)浓度增加,此部分大分子有机物浓度的增加恶化了污泥混合液的可滤性;曝气强度大于500L/d也将导致污泥絮体中1~10um细小颗粒和胞外聚合物(EPS)含量的增加.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号