首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
高速切削的刀位路径规划与控制策略   总被引:3,自引:1,他引:2  
从4个方面对高速切削路径规划进行了研究,在走刀方向的选择上提出以曲面平坦性为评价准则,以确定不同的走刀方向选取方案。对于曲率变化大的曲面,建立曲面最优进给方向图,以确定最优走刀方向;曲率变化小的曲面,以单条刀轨平均长度为原则,通过优化算法确定走刀方向。 研究了高速切削刀轨生成过程中加工策略的选择、插补、干涉处理等问题,选择适用于高速切削的层切法和行切法,提出 了相应的插补方法,并提出了一种新的适合高速切上干涉处理思路。讨论了几种加减速模式,选取更适合高速切削特点的柔性加减速模式。采用CC插补提高表面质量,考虑机床工作性能,对进给速度、加速度进行优化校验。  相似文献   

2.
小线段高速加工速度衔接数学模型   总被引:36,自引:0,他引:36  
以直线加减速为例,导出了衔接进给速度的全部约束条件,建立了小线段高速加工速度衔接数学模型.以进给速度最大为目标,提出了一种求解衔接进给速度近似最优解的新方法.该方法以给定的最大预处理段数为条件,能够根据小线段路径的具体形状和长短,在指定的最大预处理段范围内寻找最优解.仿真结果表明,本数学模型和求解方法能实现进给速度的高速衔接,从而大大提高加工效率.  相似文献   

3.
本文针对TDM04A高速CNC钻铣床数字式交流伺服进给驱动系统高速性能的要求,提出了使用硬件逻辑器件构成位置脉冲自动加减速控制的方法,完成了基于IBM-PC机的自动加减速控制接口电路的研制,从而简化了由单微机构成的交流伺服驱动系统控制软件的结构,加快了微机数据处理速度,提高了机床进给系统的运行速度。  相似文献   

4.
针对基于传统三次S型加减速算法在数控机床起止端加加速度不连续,存在柔性冲击,以及传统四次S型加减速算法模型繁复,时间复杂度高的问题,设计加加速度曲线在加速区间、减速区间的开始和结束阶段连续不断变化,提高了速度曲线变化的平滑性,减低了工件加工运行时间。同时,提出一种基于粒子群算法的速度规划方法,根据加减速控制模型构建其适应度函数,继而得到加减速规划所需的所有参数。最后通过MATLAB对所提算法进行仿真实验。结果表明:所提算法能有效降低系统的柔性冲击,并提高加工精度和运行效率。  相似文献   

5.
关于数控系统加减速控制的研究   总被引:1,自引:0,他引:1  
插补过程中的加减速控制的精度和速度是CNC系统的重要指标,决定了数控系统的性能优劣.在CNC装置中,为了保证机床在启动或停止时不产生冲击、失步、超程或振荡,必须对进给电机的脉冲频率或电压进行加减速控制.重点分析了指定脉冲控制方式下的直线型加减速控制方法和S曲线加减速控制方法.通过计算机仿真表明,直线型加减速方法计算简单,但是存在冲击;S曲线形和复合曲线加减速法不存在冲击,速度适中,但计算复杂.所以根据不同的控制精度、控制速度选择合适的加减速控制方法是很重要的.  相似文献   

6.
新兴的高新技术产业和智能化产业推动了上下料机器人的快速发展,但是其运动的平稳性限制着进一步的推广与应用.设计了一种4R上下料机器人.首先建立梯形、7段S曲线加减速控制算法,通过分析这两种算法对机器人运动平稳性的影响,提出了一种新型的S形加减速控制算法.利用ADAMS对三种算法进行仿真分析,结果表明新型的S形加减速控制算法在提高4R上下料机器人的运动平稳性方面更具优势并为4R上下料机器人后续的运动控制分析和优化奠定了基础.  相似文献   

7.
采用无刚性骨架的普通柔性风筒,加一个导向筒制成一种新型的柔性可伸缩风筒。它克服了目前使用的柔性可伸缩风筒制作工艺复杂、风阻大等方面的缺点。  相似文献   

8.
现有梯形加减速算法在机床、液压等重型设备上得到广泛应用,但其初末速度均为零,不满足服务机器人的需求。为获得服务机器人的算法,用数学推导结合实验的方法,提出了初速度不为零的柔性类梯形加减速算法,并根据不同运行距离,规划了四种运动策略,分析了切换不容策略的条件;为验证算法可行性,在自行搭建的伺服试验台上进行了测试。结果表明:类梯形加减速算法可中断运动规划,在初速度不为零的情况下重作运动规划。此算法满足可满足机器人不同运动状态下柔性加减速要求。  相似文献   

9.
在考虑速度稳定性和加工误差精度的基础上,设计了一个非均匀有理B样条曲线(Non-Uniform Rational B-Spline,NURBS)的实时自适应插补系统.开发的插补系统能够在大部分的插补过程中保持进给速度稳定,并且根据曲线的形状,自适应地调整进给速度,通过一个实时的前瞻加减速处理模块,在速度变化敏感区对加减速进行处理,同时满足了机床加减速能力的要求.通过NURBS曲线插补仿真计算的例子,显示了开发的实时自适应插补系统能够满足高速高精度插补的要求,验证了所设计的实时前瞻自适应NURBS插补算法的可行性.  相似文献   

10.
针对传统的NURBS曲线加工过程中插补算法插补参数计算精度低、实时性不高以及加速度过大对机床造成的冲击大的问题,提出了基于Runge-Kutta的NURBS曲线实时前瞻插补算法.该算法采用经典Runge-Kutta方法计算插补参数,基于弓高误差和法向加速度约束条件自动调整进给速度,根据进给步长预期值与实际值的偏差进行参数校正.由粗插补得到的离线数据寻找进给速度极值点,并对曲线进行前瞻分段,找到各前瞻插补区间上的首末速度敏感点.根据敏感速度与插补距离之间的关系重新进行加减速控制,避免速度急剧变化,从而满足机床的加减速性能要求.最后,通过Matlab仿真验证了算法的有效性.  相似文献   

11.
目的 满足椭圆曲线加工高速、高精度要求.方法 深入研究目标跟踪法对椭圆曲线的精确插补,算法结合弓高误差约束,能随椭圆曲线曲率自适应调整进给速度.提出了一种新的三次样条曲线加减速控制方法,该方法使加加速度呈线性变化,极大地减小了加工过程对数控机床造成的冲击.最后采用MATLAB进行实例仿真和性能验证分析.结果 该方法在椭圆轨迹插补过程中,插补最大轮廓误差不大于一个脉冲当量(0.001 mm),切削进给速度基本保持恒定.结论 该算法运算速度快、误差小,实现了高速、高精度要求.  相似文献   

12.
根据步进电机的运动特性,采取线性与指数相结合的线性-指数加减速方法,并把此加减速方法运用到具体的直线、圆弧加减速过程中,得到了最小偏差法直线、圆弧加减速控制的算法。采用直接计算的方式可以方便的改变加减速的时间、最高启动频率、最高运行频率以适应不同的加工状况。但是和查表方式相比,速度较慢,提出了多种方法以提高直接计算的速度,使整体的加减速方法的实施更加切实可行。  相似文献   

13.
冲床步进电机加减速运动的研究   总被引:1,自引:0,他引:1  
在分析数控冲床伺服系统特点的基础上,根据步进电机的工作原理,研究了其加减速运动曲线,并采用定时器法对匀加减速运动进行了软件设计,给出了程序流程图.  相似文献   

14.
基于数据采样插补的加减速控制的研究   总被引:6,自引:0,他引:6  
加减速控制是数控系统开发的关键技术之一.文中系统地研究了加减速的方式及算法,对其特点及应用进行了比较,并提出用迭代法代替指数法,降低算法的复杂程度.  相似文献   

15.
为得到信号交叉口的车辆运行特性和驾驶模式,开展实车驾驶试验,采集车辆在自然驾驶状态下通过信号交叉口的速度、加速度等运行参数,得到了车辆速度和纵向加速度的变化趋势、分布范围和统计特征值,分析了车速与行驶距离的相关性,确定了减速停车和起步加速的驾驶模式。结果表明:车辆驶入交叉口时在停车前100米范围内车速下降最明显;而绿灯启亮后,车辆在头50米内速度提升最明显。减速距离与初速度之间具有较高的关联度,加速距离和稳定速度之间的关联度略低。减速度总体上大于加速度,85分位减速度为1.19 m/s2,85分位加速度为1 m/s2。减速度峰值出现在停车前5秒内,而加速度峰值出现在起步后的3秒内。本研究可为跟驰模型和微观交通仿真提供参数标定值,为城市交叉口信号配时和交通管理提供实际数据参考和理论依据。  相似文献   

16.
通过驾驶模拟实验,对在灾害性天气下的杭州湾大桥进出口加减速车道的运行速度进行了试验研究,建立了加减速车道的自回归与时间序列运行速度模型,该模型主要用于高速公路安全运行速度控制标准的制定,研究成果已在杭州湾跨海大桥上得以应用.  相似文献   

17.
针对目前数控加工代码大多是连续微线段的情况,提出一种新型的自适应前瞻规划算法.首先,采用简化的S曲线加减速减少计算时间,提高加工过程的平稳性,并采用二分法求解段内可达到的最高速度;然后,采用识别速度敏感点的方法分割前瞻区间,实现自适应动态规划,进一步优化前瞻区间的终点速度,提高加工效率;最后,通过模拟实验验证算法的可行性.结果表明:相较于传统规划算法与其他前瞻规划算法,文中前瞻规划算法可显著提高加工效率.  相似文献   

18.
数控系统线性加减速通常使用多项式计算实现.该算法精度高,但预测减速点算法复杂,且通常理论减速点和实际减速点不一致.通过总结和改进现有理论,给出了两种减速点和定位的处理方法.对于点位控制这种只要求最终定位点准确的应用来说,可以应用离散卷积进行加减速控制,避免预测减速点,减小计算量.现有理论对计算过程产生的余数的处理较复杂,提出的方法简化对余数的处理,提高了效率.提出的方法都能满足定位要求,可根据精度和计算速度要求的不同进行选择.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号