首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 135 毫秒
1.
通过现场爆破振动监测,获得了煤矿综采面硬岩段深孔松动爆破地震波的衰减规律;采用sym5小波基对典型振动信号进行分解,研究爆破地震波的能量分布特征。结果表明:深孔松动爆破振动的持续时间为150 ms左右,振动速度三方向分量中径向分量最大;主振频率分布在40~60 Hz,能量主要集中在30~65 Hz的频带范围,存在强烈爆破振动造成岩石崩落对管线设备造成危害的可能。根据衰减规律,得到深孔爆破的单段最大允许药量,提出施工时控制单段最大药量和加强爆破炮孔周围防护,保证了施工安全。  相似文献   

2.
为有效预测洞室爆破对振动的振动规律,减小振动对保护建筑物的不良影响,分析起爆段数对能量分布的影响规律,需要对不同段数洞室爆破振动信号能量分布规律进行研究。以汝阳泉水沟尾矿库初期坝工程坝体堆石料开采为工程背景,采用小波变换法对爆破振动信号进行处理,获得各层频带包含能量方面信息,从频率和能量方面分析爆破振动信号时频特征。得到主振频率基本落在能量集中的频带,数个频带能量集中的现象依然存在。对比不同起爆段数的振动信号的能量分布情况,发现通过增加起爆段数,能够减少同时数个频带能量集中的现象。结合Hilbert-Huang变换(HHT)方法能同时分析信号时频特征的优点,进一步推论起爆段数增加使得振动波相互叠加效果加强,高频段振动分量相互叠加振幅消减,从而使主频向低频率收敛。  相似文献   

3.
针对台山核电厂一期工程取水明渠工程段陆上爆破挖岩对取水闸门的影响,根据实际开挖中的爆破振动监测数据,分析了取水闸门爆破振动特性,指出就所测数据而言,在垂直方向爆破振动速度峰值一般具有大于水平径向、水平切向的特点。回归分析了取水闸门地面质点振动速度在水平径向、水平切向和垂直方向的传播衰减规律,提出了为保证建筑物安全而控制不同爆心距下的单段最大段药量,对取水闸门上的实测爆破振动信号进行频谱分析,可知爆破地震波的主振频率主要集中在10~50 Hz,高于取水闸门自振频率5.26 Hz,一般不会产生较大的共振效应。研究对于以后爆破设计、施工有一定的参考意义。  相似文献   

4.
采用频率切片小波变换对复线新建隧道爆破振动与既有隧道机车振动信号进行了分析。在获取两种信号波形和频谱曲线的基础上,利用FSWT对两种信号进行了时频分析。然后根据其逆变换能切割任意频率区间的特点,对两种信号进行子频带划分并得到重构信号;并对两类信号不同的能量分布特性进行了对比研究。研究结果表明:爆破振动信号和机车振动信号的能量主要都分布于200 Hz区域内;在0~100 Hz范围内,机车振动信号所占能量相对较大;100 Hz以上频率区域,爆破振动信号所占能量比例更大。爆破振动信号相对于机车振动信号而言,属于更加高宽频的非平稳随机振动。  相似文献   

5.
为解决地铁浅埋隧道掘进过程中爆破振动对地铁施工安全及周围建构筑物的影响.论文以新疆乌鲁木齐市地铁1号线东线隧道中营工-小西沟区间段为工程背景,对地铁隧道掘进爆破时地表产生的振动效应进行了多次监测,得出地表振动速度自掌子面正上方向两边逐渐减小;将爆破产生的振动信号通过HHT方法变换,发现隧道掘进爆破产生的振动信号,其能量主要分布在时间段0~1.2 s,其频率主要分布在频率段0~60 Hz之间.采用掏槽孔分段起爆技术,显著降低爆破振动效应,同时有效控制了隧道爆破施工对周围建构筑物的影响.  相似文献   

6.
选取汶川8.0级地震中陕西省6个台站的东西向地震动加速度记录,通过HHT计算了各条地震动和其IMF分量的Hilbert能量和输入能量,对比分析了覆盖层厚度对远场长周期地震动能量特性的影响。结果表明:随着覆盖层厚度的增加,地震动的HE峰值、输入能量和Hilbert能量平均周期T_(mE)逐渐增加;当覆盖层厚度大于400 m时,地震动能量主要分布在低频区域,具有显著的长周期特性;当覆盖层厚度为0或很小时,地震动能量主要集中在前2~3阶IMF分量中,多个IMF分量的HE峰值较大,卓越IMF分量对结构的影响较小;随着覆盖层厚度的增加,地震动能量主要集中在高阶IMF分量中,仅1~2个IMF分量的HE峰值较大,其余分量均很小,卓越IMF分量的平均周期T_(mE)和原始地震动十分接近,对结构的破坏起主导作用,应重点研究。  相似文献   

7.
傅里叶变换、小波分析等方式在处理非线性非稳定信号时不能在时间和频率上同时达到较好分辨率,针对此问题,文章在经验模态分解(empirical mode decomposition,EMD)-小波阈值去噪、Hilbert变换的基础上,采用Hilbert-Huang变换(Hilbert-Huang transform,HHT)方法,从三维Hilbert谱、边际谱及瞬时能量谱3个方面对南方某铅锌矿的爆破振动信号进行了分析。结果表明:爆破振动信号的振动频率主要集中在0~200 Hz范围内,该区域能量占信号总能量的90%以上;爆炸发生时振动频率朝着低频发展,50 Hz以内的频率为主振频带;瞬时能量谱可以反映雷管爆炸的能量释放情况。文中运用瞬时能量谱精确识别了7个段位雷管的起爆时刻,发现HHT方法在处理非线性非稳定信号时,打破了Heisenberg测不准原理的限制,能从时域、频域及能量方面反映信号的变化特征,自适应性、完备性及重构性较强,精确度较高。  相似文献   

8.
根据梯段爆破过渡区岩体的爆破破坏特性,监测和收集工程爆破过渡区振动信号,运用Hilbert-Huang变换(HHT)方法对过渡区爆破振动信号进行分析,量化振动信号在频域上的能量分布,结合BP神经网络建立梯段爆破过渡区岩体损伤的量化模型,实现梯段爆破过渡区岩体损伤的量化分析。  相似文献   

9.
选取汶川8.0级地震中陕西省6个台站的东西向地震动加速度记录,通过HHT计算了各条地震动和其IMF分量的Hilbert能量和输入能量,对比分析了覆盖层厚度对远场长周期地震动能量特性的影响。结果表明:随着覆盖层厚度的增加,地震动的HE峰值、输入能量和Hilbert能量平均周期TmE逐渐增加,当覆盖层厚度大于400m时,地震动能量主要分布在低频区域,具有显著的长周期特性;当覆盖层厚度为0或很小时,地震动能量主要集中在前2-3阶IMF分量中,多个IMF分量的HE峰值较大,卓越IMF分量对结构的影响较小;随着覆盖层厚度的增加,地震动能量主要集中在高阶IMF分量中,仅1-2个IMF分量的HE峰值较大,其余分量均很小,卓越IMF分量的平均周期TmE和原始地震动十分接近,对结构的破坏起主导作用,应重点研究。  相似文献   

10.
基于HHT分析法,对远区爆破振动信号进行时频分析。研究信号中能量随爆源距增加的演化及分布规律。结果表明:爆破振动总能量及峰值能量随着爆源距的增加衰减较快;低频段能量在传播过程中会随爆源距增加有增大的趋势;而中高频能量则是随着爆源距的增加有减小的趋势。同时,爆源距对远区爆破振动的频率段构成也会造成影响,即频率左右限均有减小的趋势;但频带宽度总体保持不变。考虑爆破振动信号所携带的能量信息在爆破振动设计方案的优化中同样具有重大的工程意义。  相似文献   

11.
依托右线隧道穿过民房正下方的福建省厦门市石堀山隧道工程,在民房第一、二层墙角处各布置一台自动化爆破振动仪,对爆破开挖引起的振动进行长期监测.结果表明:爆破振速整体上随着测点与掌子面距离的减小而增大;在三向振速中,垂向振速不一定总是最大,但主频小于30 Hz,垂向振速占比最多;分析时应综合振速与主频,选择优势分向振速,或根据建筑物固有频率,选择接近的主频对应的分向振速;当测点与掌子面距离为10~50 m时,爆破振度显著放大,而主频有一定的衰减,径向和垂向主频衰减至与房屋固有频率接近;当测点与掌子面距离为50 m内时,随着掌子面远离测点,振速影响系数Cv先增大后减小,主频影响系数Cf先减小后增大;空洞影响垂向最大,径向次之,切向最小;Cv最大值为3.4,Cf最小值为0.35.  相似文献   

12.
井筒冻土爆破振动测试波形回归与频谱分析   总被引:1,自引:0,他引:1  
为保证冻结井筒爆破施工安全、提高施工速度,采用Topbox振动信号自记仪进行冻结段爆破振动测试,测点布置在冻结沟槽内偏斜较大的冻结管的位置.爆破振动测试表明,立井冻结段爆破产生的振动信号成分非常复杂.通过对爆破振动信号的回归分析和傅立叶幅值谱分析,得出振动主频较一般的地面爆破高,而且有多个主频,第一主频在150 Hz左右;立井爆破振动的径向振动速度较垂向振动速度大;回归出径向振动速度、垂向振动速度与等效装药量、等效水平距离和高差之间的关系.立井冻结段爆破施工建议采用半秒延期或秒延期雷管,以防止振动波的叠加.  相似文献   

13.
为了建立预测精度较高的戈壁地区爆破振动衰减模型,首先在大量现场爆破振动监测的基础上回归得到了传统的萨道夫斯基公式;进一步通过分析与爆破效应相关的物理量,基于量纲分析法推导了可以反映柱状装药特征的成排深孔爆破振动速度预测公式;最后将推导得到的爆破振动速度预测公式与传统萨道夫斯基公式进行现场应用,验证本文爆破振动公式的准确性。研究结果表明,本文爆破振动公式在三个方向上(水平径向、水平切向和垂直向)的振动速度预测精度均高于萨道夫斯基公式,后者预测值的平均相对误差约为本文爆破振动公式的两倍。研究结果可为爆破振动的分析、预测以及安全评价提供参考依据。  相似文献   

14.
为了建立由土中爆炸引起的地表水平向振动衰减模式,评估湿砂场地爆炸振动安全性,分别考虑水平径向和切向振动分量,基于大型爆炸试验场地,开展了一系列湿砂中的单药包爆炸振动试验,研究了药包质量、埋深等因素对地表水平向振动速度的影响。研究结果显示,随着药量减小或爆距增大,地表水平向峰值振动速度的变化符合幂次衰减规律,药包埋深对峰值振动速度的影响甚微。基于Sadovsky经验公式基本形式,建立了湿砂场地地表水平向峰值振动速度的经验拟合公式。基于主频条件下的振动峰值强度衰减规律,对试验场地及周边环境的振动安全性进行了评估,以确定后续试验单个药包的合理用药量。  相似文献   

15.
为了避免隧道爆破施工时邻近地表及地下输油管道受到爆破振动造成的不良影响,需确保爆破施工工作面与输油管道保持一定安全距离。基于青岛胶州湾第二海底隧道黄岛端斜井工程,通过对斜井一期工程隧道爆破施工引起的地表振动进行监测,研究了工作面前方地表振速的衰减规律,并采用Hilbert-Huang变换及小波包分析了爆破振动频域特征。结果表明:在距工作面0~40 m的高振速区范围内,振速呈现震荡变化,峰值合振速出现在距工作面一定距离的地表区域,而在高振速区之外部分呈指数衰减趋势;爆破振动的频域分布主要集中在0~200 Hz的低频区域,50 Hz左右为其最集中区域,瞬时能量峰值出现在0~1 s内,其中在0~25 Hz范围内能量占比最高为13.41%,与输油管道自振频率范围存在部分重叠。同时,引入萨道夫斯基修正公式并拟合出适用于本工程条件下的振速预测公式模型,从法律规范、工程实践及抗震能力3个方面考虑提出输油管道安全振速为1 cm/s,计算得到50 m范围内最大单段齐爆药量和安全距离之间的关系,为后续斜井二期工程下穿输油管道区域时的爆破方案优化提供参考。  相似文献   

16.
针对岩石类动力学灾害如地震、岩爆、冲击地压、煤矿开采中的三突问题,其形成机制都可归结为岩石损伤演化诱致结构灾变的模式。工程结构灾变区的形成和发展可以通过数值模拟确定。根据微损伤不可逆演化原理,利用格形有限元模型,模拟巷道断面在自适应位移加载条件下,从点状微损伤斑图到宏观贯通断裂的不可逆的跨尺度生长过程。数值程序是在ANSYS平台上开发。  相似文献   

17.
旋转圆盘雾化器广泛用于工业领域.设计了一种多曲盘旋转雾化装置,介绍了装置的整体设计方案和主要结构参数的确定,并对电机不同工作频率下装置的振动特性进行了试验.结果表明:装置的最大振动位移在装置水平方向,为10 Hz时的0.308 mm;最大振动速度在装置垂直方向,为35 Hz时的11.9 m/s;最大振动加速度在装置垂直方向,为40 Hz时的10.5 m/s2.装置在10 Hz以及35~50 Hz范围内运行时存在较大振动;在15~30 Hz范围内运行相对较为平稳,建议装置在此范围内运行;装置在垂直方向上振动较为明显,应增添垂直方向上约束以实现装置的减振.  相似文献   

18.
基于十堰市高家沟堰口采石场爆破开挖工程现场试验,对矿山附近一栋多层建筑物进行爆破振动监测,分析了该建筑物不同楼层的振动速度及谐波频率的变化规律。结果表明:爆破远区的多层建筑物受爆破振动影响时,垂直方向振动速度随着楼层高度的增加而变大,水平方向振动速度随着楼层高度的增加而变小;爆破振动产生的谐波频率丰富,较高楼层谐波频率分布范围小于较低楼层且更接近建筑物的固有频率。  相似文献   

19.
为研究隧道爆破地震波作用下砌体建筑物的振动响应,以青岛地铁3号线下穿某砌体建筑物爆破施工为背景,通过现场爆破振动监测和有限元数值模拟,对砌体结构的爆破振动速度和主振频率随楼层的变化规律进行研究。结合数值计算,进一步分析隧道埋深、单段最大装药量,装药结构等不同因素下砌体建筑物的振动响应。分析表明:在隧道爆破地震波作用下砌体结构在垂直方向的振动响应强度明显大于水平方向,并且存在一定的高程放大效应,在爆破施工时应加强对砌体结构顶层的防护;隧道下穿砌体建筑物施工时,爆破地震波的主频率主要集中在10~60 Hz内,建筑物自振频率则大多为3.0~3.5 Hz,该砌体建筑物与爆破地震波较难发生共振;砌体结构动力响应强度随着不耦合系数的增加而逐渐降低,随单段最大装药量增加近似呈线性关系,改变装药结构及控制单段最大装药量是控制爆破振动的有效措施;爆破振动速度对隧道的埋深响应敏感,在数值上出现数量级的变化。通过对多层砌体结构振动响应分析,有利于不断提高与完善现有的爆破技术与减振措施。  相似文献   

20.
 针对爆破振动安全标准的缺陷和小波折合能量法存在基函数、分解尺度选择的问题,基于集成经验模式分解(EEMD)技术,提出爆破振动折合能量安全评判新方法。对爆破振动波进行EEMD 分解,识别造成破坏的优势IMF 分量,求取其能量和频率,并结合构筑物固有频率进行折合能量计算,以此进行安全评判。基于某矿实测爆破振动数据,计算各信号的折合能量,综合现场破坏情况,得出该矿爆破振动波折合能量安全阈值为1.0×10-7 J。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号