首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 218 毫秒
1.
800MPa级冷轧双相钢的动态变形行为及本构模型   总被引:1,自引:0,他引:1  
采用Hopkinson拉杆试验系统对800 MPa级冷轧双相钢(DP800)进行动态拉伸试验,动态拉伸选择应变速率为500、1000和2250 s-1 . 通过比较试验结果得出:双相钢的塑性延伸强度Rp0. 2和抗拉强度Rm与应变速率的关系呈指数形式增加;DP800在高应变速率塑性变形会产生绝热温升效应,计算可得DP800在应变速率为2250 s-1时拉伸变形产生的绝热温升为89℃. 基于J-C ( Johnson-Cook)模型和Z-A ( Zerilli-Armstrong)模型,对DP800的本构模型进行了研究,并对J-C模型应变速率效应多项式进行二次化修正,修正后的J-C模型相较于J-C模型对DP800在不同应变速率下的平均可决系数从0. 9228提高到0. 9886.  相似文献   

2.
利用Gleeble 3500开展了Fe-6.5%Si(质量分数)钢在变形温度300,400,500,600℃及应变速率为0.05,0.5,5s-1条件下的单道次压缩实验.在初始均匀塑性变形阶段,加工硬化作用使流动应力迅速增加,随着变形继续动态软化机制启动,流动应力增加量减弱.随着温度升高和应变速率降低,应变硬化指数减小.提出了通过变形温度、应变速率描述应变硬化指数的方法构建Fe-6.5%Si钢中温变形过程本构方程.构建的本构方程对不同变形条件的应力预测结果和实测值吻合良好,平均相对误差约为5.35%,预测精度较高.  相似文献   

3.
为了简化材料J-C本构模型的建立过程,提出一种基于自定义函数确定本构模型参数的逆向拟合法;通过准静态拉伸实验和霍普金森压杆实验获得H13钢在应变率为1~15 000 s-1,温度为298~1 073 K条件下的真应力-真应变曲线;在总结不同的H13钢J-C本构模型并确定各材料参数范围的基础上,利用J-C本构函数对真应力-真应变曲线进行自定义函数逆向拟合,从而获得H13钢J-C本构模型在不同条件下的材料参数,并进一步建立材料参数关于温度和应变率的关系函数,确定H13钢在大应变率和高温条件下的J-C本构模型。研究结果表明:本文建立的修正型J-C本构模型能够真实地反映H13钢的流变行为。  相似文献   

4.
采用Gleeble-3800热模拟试验机研究工程机械用Q1100钢在变形温度为850~1 200℃、应变速率为0.01~10.00 s~(-1) 条件下的热变形行为,建立恒定应变与应变补偿的Arrhenius本构方程。研究结果表明:随着变形温度升高、应变速率减小,Q1100钢的流变应力降低,真应力-真应变曲线发生由动态回复型到动态再结晶型的转变;随应变增加,参数α和n先减小后趋于平缓,Q和ln A先减小后增大,其六次多项式拟合效果较好,相关系数R均在0.98以上;流变应力预测值与实验值的相关系数为0.992 66,绝对误差在15MPa内的数据点有92.13%,平均相对误差为5.25%,验证了模型的准确性。  相似文献   

5.
采用Geeble1500型热模拟试验机对MoLa合金进行等温恒应变速率压缩实验,研究在温度800~1 150℃、应变速率0.001~10 s~(-1)范围内的流变曲线特点及本构方程。结果表明,MoLa合金的流变应力随温度的升高和应变速率的降低而减小,变形机制主要以动态回复软化为主,在应变速率为0.001 s~(-1)时,1 000~1 150℃变形温度下软化现象最为显著,其流变应力随应变的增加而降低;采用双曲正弦函数建立Mo La合金本构方程,其变形激活能为342.68 k J/mol,经过误差分析得出所建立的本构方程的相关系数和相对误差分别为0.9441和7.13%,能够较好地预测该合金的热变形行为。  相似文献   

6.
在Gleeble-1500热模拟实验机上对原位生成TiC颗粒增强钛基复合材料进行热压缩实验,研究变形温度为700~950℃,应变速率为0.001~1s-1时的热变形行为.研究结果表明:变形温度和应变速率对流变应力有显著影响,流变应力随变形温度的升高而降低,随应变速率的增加而升高.原位生成钛基复合材料在(α+β)相区激活能为357.09kJ/mol,β相区激活能为227.18k.J/mol,采用Zener-Hollomon参数法构建其高温塑性变形的本构关系.根据动态材料模型,建立原位生成钛基复合材料的加工图,并确定热变形的流变失稳区域.  相似文献   

7.
以高温压缩实验为基础,分析了变形温度1 123~1 423 K、应变速率0.01~10 s-1条件下20CrMnTiH的流动应力行为,并引入Zener-Hollomon参数,根据蠕变理论回归确定变形激活能、硬化指数、材料相关常数,构建了材料的本构模型.以Z参数作为本构模型准确性的衡量标准,根据Arrhenius指数方程建立了峰值应力、峰值应变关于Z参数的表达式并求出估算值,代入基于应变软化的应力应变方程,采用整个应变区间上的非线性拟合求解待定参数.方程计算值与实验数据具有良好一致性,平均误差为6.84%,证明Z参数的精度较好,从而间接验证了该模型的准确性.
  相似文献   

8.
42CrMo钢的热压缩流变应力行为   总被引:8,自引:2,他引:6  
为实现42CrMo钢锻造的数值模拟与合理制定其热成形工艺参数,采用Gleeble-1500热模拟实验机研究工业用42CrMo钢在变形温度为850~1150℃和应变速率为0.01~50s^-1条件下的流变应力行为。通过线性回归分析确定42CrMo钢的应变硬化指数以及形变表观激活能,获得42CrMo钢高温条件下的流变应力本构方程,并验证该流变应力本构方程的准确性。研究结果表明:42CrMo钢在热压缩变形过程中发生了明显的动态回复与动态再结晶,流变应力随应变速率的增加而增加,随温度的升高而降低;流变应力的预测值与实验值较吻合,而且预测的最大相对误差仅为4.54%。  相似文献   

9.
通过Gleeble 2000上的热模拟压缩实验,分析了Q235低碳钢在不同热加工参数下的动态组织演化特征.结果表明:应变速率和温度对Q235钢的奥氏体形变特征影响强烈.在相同变形温度下,应变速率的提高可以明显推迟动态再结晶的发生;应变速率较低时,降低温度同样可以延迟动态再结晶的发生.利用定量金相技术及线性、非线性拟合算法,建立了Q235钢热变形过程的唯像本构关系及组织演化动力学模型,并将其应用于Autoforge 3.1有限元软件平台.压缩过程有限元模拟分析表明,分别采用Arrhenius双曲正弦方程描述Q235钢的唯像本构关系及Yada模型表征Q235钢变形过程的平均晶粒尺寸,可以满足预测精度,与实际变形过程基本吻合.  相似文献   

10.
系统研究了1215钢的热变形行为,分析了应变、应变速度和温度对钢的流变应力的影响规律.通过热模拟实验,研究分析了不同的应变速率和应变温度条件下1215钢的应力-应变曲线.以实验数据为基础,以Johnson-Cook本构模型为依据,讨论了拟合分析Johnson-Cook方程参数的方法.通过实验数据的拟合分析,得到了表达1215钢流变应力随应变、应变速度和形变温度的数学方程,为研究1215钢的动态应力-应变行为提供了基础.研究工作表明,理论计算与实验数据得到了较好的吻合.  相似文献   

11.
对高锰TWIP钢进行不同温度(850~1100℃)和应变速率(0.01,0.1,1,5,10s-1)的绝热压缩试验,研究试验钢高温热变形行为. 分析了变形温度和应变速率对流动特性的影响,建立了应变补偿型本构方程,并采用三种标准统计参数对应变补偿型本构方程的精确度进行了评估. 结果表明:流动应力对变形温度和应变速率的敏感程度很高,且随着变形温度的提高或应变速率的降低,流动应力呈下降趋势;应变速率对动态再结晶过程有着很复杂的影响;流动应力预测值与试验值具有较高的吻合度,表明建立的应变补偿型本构方程能够精确预测流动应力.  相似文献   

12.
利用MMS-200热模拟实验机,对S32750超级双相不锈钢在温度为1 000~1 150℃,应变速率为0.01~10 s-1的条件下进行了单道次压缩实验,测定了真应力-真应变曲线,对热变形组织进行了分析.实验结果表明:当变形温度一定时,峰值应力随着应变速率的增加而增加.提高热变形温度,降低应变速率,可以促进奥氏体动态再结晶的发生.根据热变形方程计算得到压缩变形时的热变形激活能Q=460 kJ/mol.在相应的变形条件下,获得了S32750超级双相不锈钢热变形过程中峰值应力与Z参数的关系式.  相似文献   

13.
采用自行设计带有小型加温装置的改进的分离式Hopkinson拉杆装置测试了金属材料在高温条件下的动态拉伸性能,并用修正的Johnson-Cook模型作为材料的本构关系,提出了一种拟合金属材料在弹性及塑性阶段应变率及温度相关的损伤模型,并拟合出参数.结果表明:改进装置能够精确控制加温速率及温度,减小杆端软化的影响,测试结果相对误差小于1.5%;金属材料304不锈钢的屈服应力及断裂应变具有明显的正应变率效应的温度软化效应,但材料弹性模量具有负应变率效应和负温度效应;在293—625K之间计算结果和试验结果吻合较好,表明可用这种方法测试及估算材料高温动态力学性能,并用于工程分析.  相似文献   

14.
利用Gleeble-1500D热模拟试验机对添加少量C原子的非等原子比CoCrFeNi高熵合金进行热变形处理.结果表明,当变形温度为1123K,应变速率为0.1s-1时,合金的显微组织主要为变形晶粒,随着温度的升高或应变速率的降低,变形晶粒边缘开始出现细小的等轴晶;当变形温度为1223K时,其组织全部为等轴的再结晶晶粒.当变形温度大于1223K时,晶粒开始出现明显的长大现象.利用Arrhenius模型及Avrami方程,建立了CoCrFeNi高熵合金的再结晶动力学模型,对应的再结晶激活能为526.078kJ·mol-1.  相似文献   

15.
对Fe-11Mn-2Al-0.2C中锰钢进行不同应变速率(2×10-4~200s-1)下的拉伸试验,探讨其力学性能和变形机制.结果表明:随应变速率的增加,抗拉强度由1456MPa逐渐降低到1086MPa;在应变速率为2×10-4~20s-1时,总伸长率由48.2%降低到38.2%;在应变速率为20~200s-1时,由38.2%上升至44.0%.随应变速率的增加,试样的显微组织被拉长、扭曲、切断;韧窝形态由深的等轴韧窝向浅的卵形韧窝转变;试样受力由正应力为主导逐渐转变为剪切应力为主导.变形机制与应变速率有关,低应变速率(2×10-4~2×10-3s-1)下TRIP效应明显;中应变速率(2×10-2~2s-1)下TRIP效应受到抑制,出现TWIP效应;高应变速率(2~200s-1)下TRIP和TWIP效应都增强.  相似文献   

16.
通过单道次压缩实验,研究了一种低碳、Ti-V复合微合金化钢在温度为1 173~1 373 K及应变速率为0.1~10 s-1条件下的奥氏体应力-应变行为;基于Akben等对溶质阻碍动态再结晶的量化研究工作,获得了本实验钢的近似的形变激活能Qdef及Zener-Hollomon参数;采用Jonas等的分析方法,计算得到回复参数r和r’、屈服应力σ0、饱和流变应力σsat和动态再结晶临界应力σc与Z参数的关系;获得了动态再结晶动力学,并最终建立流变应力数学模型.  相似文献   

17.
预应力钢绞线动态力学拉伸性能及本构关系   总被引:1,自引:1,他引:0  
首先利用电液伺服加载试验机对单束钢绞线在(10~(-3)~10~(-1)s~(-1))应变率范围内进行动态力学拉伸试验;然后根据实验数据,分析了不同应变率对屈服强度的影响规律;并对我国设计规范中用于硬钢类材料简化计算的Ramberg-Osgood本构模型进行修正,以获得可以更好地描述钢绞线动态拉伸应力-应变关系的本构模型。研究表明,单束钢绞线的应变率越大,其屈服应变和极限应变越小,屈服强度越大。修正后的Ramberg-Osgood本构模型能够较好地描述钢绞线动态拉伸应力-应变关系;并且随着应变率的增大,钢绞线的硬化指数减小,残余应变增大。  相似文献   

18.
以微合金钢为材料,采用光学显微镜和EBSD,研究热模拟平面应变实验条件下再结晶奥氏体和变形奥氏体的织构演变.研究发现,在热模拟平面应变实验的压缩过程中,试样的两个自由端限制了变形区金属的宽向流动,达到了很好的平面应变状态.对于再结晶奥氏体相变工艺,由于相变前奥氏体发生再结晶,无畸变保留,奥氏体分解为仿晶界铁素体、贝氏体和少量的珠光体,织构为{100}011α;对于变形奥氏体相变工艺,未再结晶区的变形促进了铁素体相变,使奥氏体分解为铁素体和珠光体组织,织构为{332}113α和{113}110α.此两种工艺条件下的织构,皆为平面应变条件下的奥氏体相变织构,即热模拟平面应变实验可以达到很好的平面应变状态,可用于研究热轧过程的织构演变.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号