首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
The cytokine transforming growth factor-beta (TGF-beta) is an important negative regulator of adaptive immunity. TGF-beta is secreted by cells as an inactive precursor that must be activated to exert biological effects, but the mechanisms that regulate TGF-beta activation and function in the immune system are poorly understood. Here we show that conditional loss of the TGF-beta-activating integrin alpha(v)beta8 on leukocytes causes severe inflammatory bowel disease and age-related autoimmunity in mice. This autoimmune phenotype is largely due to lack of alpha(v)beta8 on dendritic cells, as mice lacking alpha(v)beta8 principally on dendritic cells develop identical immunological abnormalities as mice lacking alpha(v)beta8 on all leukocytes, whereas mice lacking alpha(v)beta8 on T cells alone are phenotypically normal. We further show that dendritic cells lacking alpha(v)beta8 fail to induce regulatory T cells (T(R) cells) in vitro, an effect that depends on TGF-beta activity. Furthermore, mice lacking alpha(v)beta8 on dendritic cells have reduced proportions of T(R) cells in colonic tissue. These results suggest that alpha(v)beta8-mediated TGF-beta activation by dendritic cells is essential for preventing immune dysfunction that results in inflammatory bowel disease and autoimmunity, effects that are due, at least in part, to the ability of alpha(v)beta8 on dendritic cells to induce and/or maintain tissue T(R) cells.  相似文献   

2.
Integrins are heterodimeric cell-surface proteins that regulate cell growth, migration and survival. We have shown previously that the epithelial-restricted integrin alpha(v)beta6 has another critical function; that is, it binds and activates latent transforming growth factor-beta (TGF-beta). Through a global analysis of pulmonary gene expression in the lungs of mice lacking this integrin (Itgb6 null mice) we have identified a marked induction of macrophage metalloelastase (Mmp12)--a metalloproteinase that preferentially degrades elastin and has been implicated in the chronic lung disease emphysema. Here we report that Itgb6-null mice develop age-related emphysema that is completely abrogated either by transgenic expression of versions of the beta6 integrin subunit that support TGF-beta activation, or by the loss of Mmp12. Furthermore, we show that the effects of Itgb6 deletion are overcome by simultaneous transgenic expression of active TGF-beta1. We have uncovered a pathway in which the loss of integrin-mediated activation of latent TGF-beta causes age-dependent pulmonary emphysema through alterations of macrophage Mmp12 expression. Furthermore, we show that a functional alteration in the TGF-beta activation pathway affects susceptibility to this disease.  相似文献   

3.
R J Akhurst  F Fee  A Balmain 《Nature》1988,331(6154):363-365
Tumour promoters induce a wide spectrum of morphological and biochemical alterations when applied to mouse epidermis in vivo. These include the induction of RNA, DNA and protein synthesis during discrete phases of proliferation and differentiation. This constitutes an ideal model for studying molecular events underlying the disruption of epidermal homeostasis by TPA, and its subsequent re-establishment. Transforming growth factor-beta (TGF-beta) can induce either growth stimulation, inhibition, or differentiation, depending on the target cell. A function has been proposed for TGF-beta in wound healing and in tumour promotion, but the main source of TGF-beta is generally thought to be platelets, macrophages or lymphocytes, and a direct role for this growth factor in regulating tissue homeostasis in vivo has not been demonstrated. We show here that when the tumour promoter 12-tetradecanoyl-phorbol-13-acetate (TPA) is applied to the skin of mice, very high levels of TGF-beta messenger RNA are induced in the epidermal cells. In situ hybridization techniques show that the main site of TGF-beta synthesis is in the suprabasal differentiating epidermal cells. These results suggest that TGF-beta may be a natural regulator of epidermal homeostasis which is important in tumour promotion.  相似文献   

4.
Bettelli E  Carrier Y  Gao W  Korn T  Strom TB  Oukka M  Weiner HL  Kuchroo VK 《Nature》2006,441(7090):235-238
On activation, T cells undergo distinct developmental pathways, attaining specialized properties and effector functions. T-helper (T(H)) cells are traditionally thought to differentiate into T(H)1 and T(H)2 cell subsets. T(H)1 cells are necessary to clear intracellular pathogens and T(H)2 cells are important for clearing extracellular organisms. Recently, a subset of interleukin (IL)-17-producing T (T(H)17) cells distinct from T(H)1 or T(H)2 cells has been described and shown to have a crucial role in the induction of autoimmune tissue injury. In contrast, CD4+CD25+Foxp3+ regulatory T (T(reg)) cells inhibit autoimmunity and protect against tissue injury. Transforming growth factor-beta (TGF-beta) is a critical differentiation factor for the generation of T(reg) cells. Here we show, using mice with a reporter introduced into the endogenous Foxp3 locus, that IL-6, an acute phase protein induced during inflammation, completely inhibits the generation of Foxp3+ T(reg) cells induced by TGF-beta. We also demonstrate that IL-23 is not the differentiation factor for the generation of T(H)17 cells. Instead, IL-6 and TGF-beta together induce the differentiation of pathogenic T(H)17 cells from naive T cells. Our data demonstrate a dichotomy in the generation of pathogenic (T(H)17) T cells that induce autoimmunity and regulatory (Foxp3+) T cells that inhibit autoimmune tissue injury.  相似文献   

5.
Type-beta transforming growth factors (TGF-beta s) are polypeptides that act hormonally to control proliferation and differentiation of many cell types. Two distinct homodimeric TGF-beta polypeptides, TGF-beta 1 and TGF-beta 2 have been identified which show approximately 70% amino-acid sequence similarity. Despite their structural differences, TGF-beta 1 and TGF-beta 2 are equally potent at inhibiting epithelial cell proliferation and adipogenic differentiation. The recent immunohistochemical localization of high levels of TGF-beta in the bone marrow and haematopoietic progenitors of the fetal liver has raised the possibility that TGF-beta s might be involved in the regulation of haematopoiesis. Here we show that TGF-beta 1, but not TGF-beta 2, is a potent inhibitor of haematopoietic progenitor cell proliferation. TGF-beta 1 inhibited colony formation by murine factor-dependent haematopoietic progenitor cells in response to interleukin-3 (IL-3) or granulocyte-macrophage colony stimulating factor (GM-CSF), as well as colony formation by marrow progenitor cells responding to CSF-1 (M-CSF). The progenitor cell lines examined were approximately 100-fold more sensitive to TGF-beta 1 than TGF-beta 2, and displayed type-I TGF-beta receptors with affinity approximately 20-fold higher for TGF-beta 1 than TGF-beta 2. These results identify TGF-beta 1 as a novel regulator of haematopoiesis that acts through type-I TGF-beta receptors to modulate proliferation of progenitor cells in response to haematopoietic growth factors.  相似文献   

6.
Deactivation of macrophages by transforming growth factor-beta   总被引:65,自引:0,他引:65  
S Tsunawaki  M Sporn  A Ding  C Nathan 《Nature》1988,334(6179):260-262
Macrophage activation--enhanced capacity to kill, in a cell that otherwise mostly scavenges--is essential for host survival from infection and contributes to containment of tumours. Both microbes and tumour cells, therefore, may be under pressure to inhibit or reverse the activation of macrophages. This reasoning led to the demonstration of macrophage deactivating factors from both microbes and tumour cells. In some circumstances the host itself probably requires the ability to deactivate macrophages. Macrophages are essential to the healing of wounds and repair of tissues damaged by inflammation. Yet the cytotoxic products of the activated macrophages can damage endothelium, fibroblasts, smooth muscle and parenchymal cells (reviewed in ref. 6). Thus, after an inflammatory site has been sterilized, the impact of macrophage activation on the host might shift from benefit to detriment. These concepts led us to search for macrophage deactivating effects among polypeptide growth factors that regulate angiogenesis, fibrogenesis and other aspects of tissue repair. Among 11 such factors, two proteins that are 71% similar proved to be potent macrophage deactivators: these are transforming growth factor-beta 1 (TGF-beta 1) and TGF-beta 2.  相似文献   

7.
The deposition of silica particles in the lung of man or experimental animals leads to silicosis, a disease of progressive respiratory failure caused by a fibrotic reaction. It has long been suspected that the phagocytosis of silica by pulmonary macrophages induces the secretion of fibrogenic factors. Several potentially fibrogenic cytokines released by macrophages have been identified, including interleukin-1 (IL-1), tumour necrosis factor-alpha (TNF), platelet-derived growth factor, basic fibroblast growth factor and transforming growth factor-beta (TGF-beta). Here we show that TNF plays an important part in silica-induced pulmonary fibrosis in mice in that (1) a single instillation of silica leads to a marked increase in the level of lung TNF messenger RNA which lasts for greater than 70 days, while there are no obvious changes in the amounts of IL-1 alpha or TGF-beta mRNAs; and (2) silica-induced collagen deposition is almost completely prevented by anti-TNF antibody, but is significantly increased by continuous infusion of mouse recombinant TNF.  相似文献   

8.
Korn T  Bettelli E  Gao W  Awasthi A  Jäger A  Strom TB  Oukka M  Kuchroo VK 《Nature》2007,448(7152):484-487
On activation, naive T cells differentiate into effector T-cell subsets with specific cytokine phenotypes and specialized effector functions. Recently a subset of T cells, distinct from T helper (T(H))1 and T(H)2 cells, producing interleukin (IL)-17 (T(H)17) was defined and seems to have a crucial role in mediating autoimmunity and inducing tissue inflammation. We and others have shown that transforming growth factor (TGF)-beta and IL-6 together induce the differentiation of T(H)17 cells, in which IL-6 has a pivotal function in dictating whether T cells differentiate into Foxp3+ regulatory T cells (T(reg) cells) or T(H)17 cells. Whereas TGF-beta induces Foxp3 and generates T(reg) cells, IL-6 inhibits the generation of T(reg) cells and induces the production of IL-17, suggesting a reciprocal developmental pathway for T(H)17 and T(reg) cells. Here we show that IL-6-deficient (Il6-/-) mice do not develop a T(H)17 response and their peripheral repertoire is dominated by Foxp3+ T(reg) cells. However, deletion of T(reg) cells leads to the reappearance of T(H)17 cells in Il6-/- mice, suggesting an additional pathway by which T(H)17 cells might be generated in vivo. We show that an IL-2 cytokine family member, IL-21, cooperates with TGF-beta to induce T(H)17 cells in naive Il6-/- T cells and that IL-21-receptor-deficient T cells are defective in generating a T(H)17 response.  相似文献   

9.
Role for carbohydrate structures in TGF-beta 1 latency   总被引:27,自引:0,他引:27  
K Miyazono  C H Heldin 《Nature》1989,338(6211):158-160
Transforming growth factor-beta (TGF-beta) (reviewed in refs 1-3) is a family of molecules that are made up as disulphide-bonded dimers of at least three different types of homologous polypeptides. The active molecules are cleaved from the C termini of precursors. TGF-beta 1, like other forms of TGF-beta, is synthesized and secreted in a latent high relative molecular mass form (L-TGF-beta 1) from which active TGF-beta 1 can be released by transient and probably unphysiological acidification. The latent complex from human platelets contains one dimeric TGF-beta 1 molecules, which is noncovalently associated with a disulphide-bonded complex of one dimeric remnant of the precursor and a single molecule of the so-called TGF-beta 1 binding protein (TGF-beta 1-BP). We report here that enzymatic removal in vitro of the carbohydrate structures in the remnant of the TGF-beta 1 precursor produces biologically active TGF-beta 1 from the latent complex, suggesting that carbohydrate structures are of importance in rendering TGF-beta 1 inactive in the complex in vivo.  相似文献   

10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号