首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hirota T  Lipp JJ  Toh BH  Peters JM 《Nature》2005,438(7071):1176-1180
Histones are subject to numerous post-translational modifications. Some of these 'epigenetic' marks recruit proteins that modulate chromatin structure. For example, heterochromatin protein 1 (HP1) binds to histone H3 when its lysine 9 residue has been tri-methylated by the methyltransferase Suv39h (refs 2-6). During mitosis, H3 is also phosphorylated by the kinase Aurora B. Although H3 phosphorylation is a hallmark of mitosis, its function remains mysterious. It has been proposed that histone phosphorylation controls the binding of proteins to chromatin, but any such mechanisms are unknown. Here we show that antibodies against mitotic chromosomal antigens that are associated with human autoimmune diseases specifically recognize H3 molecules that are modified by both tri-methylation of lysine 9 and phosphorylation of serine 10 (H3K9me3S10ph). The generation of H3K9me3S10ph depends on Suv39h and Aurora B, and occurs at pericentric heterochromatin during mitosis in different eukaryotes. Most HP1 typically dissociates from chromosomes during mitosis, but if phosphorylation of H3 serine 10 is inhibited, HP1 remains chromosome-bound throughout mitosis. H3 phosphorylation by Aurora B is therefore part of a 'methyl/phos switch' mechanism that displaces HP1 and perhaps other proteins from mitotic heterochromatin.  相似文献   

2.
3.
4.
Okada Y  Scott G  Ray MK  Mishina Y  Zhang Y 《Nature》2007,450(7166):119-123
Recent studies indicate that, similar to other covalent modifications, histone lysine methylation is subject to enzyme-catalysed reversion. So far, LSD1 (also known as AOF2) and the jumonji C (JmjC)-domain-containing proteins have been shown to possess histone demethylase activity. LSD1 catalyses removal of H3K4me2/H3K4me1 through a flavin-adenine-dinucleotide-dependent oxidation reaction. In contrast, JmjC-domain-containing proteins remove methyl groups from histones through a hydroxylation reaction that requires alpha-ketoglutarate and Fe(II) as cofactors. Although an increasing number of histone demethylases have been identified and biochemically characterized, their biological functions, particularly in the context of an animal model, are poorly characterized. Here we use a loss-of-function approach to demonstrate that the mouse H3K9me2/1-specific demethylase JHDM2A (JmjC-domain-containing histone demethylase 2A, also known as JMJD1A) is essential for spermatogenesis. We show that Jhdm2a-deficient mice exhibit post-meiotic chromatin condensation defects, and that JHDM2A directly binds to and controls the expression of transition nuclear protein 1 (Tnp1) and protamine 1 (Prm1) genes, the products of which are required for packaging and condensation of sperm chromatin. Thus, our work uncovers a role for JHDM2A in spermatogenesis and reveals transition nuclear protein and protamine genes as direct targets of JHDM2A.  相似文献   

5.
Inflammasomes in health and disease   总被引:1,自引:0,他引:1  
Strowig T  Henao-Mejia J  Elinav E  Flavell R 《Nature》2012,481(7381):278-286
Inflammasomes are a group of protein complexes built around several proteins, including NLRP3, NLRC4, AIM2 and NLRP6. Recognition of a diverse range of microbial, stress and damage signals by inflammasomes results in direct activation of caspase-1, which subsequently induces secretion of potent pro-inflammatory cytokines and a form of cell death called pyroptosis. Inflammasome-mediated processes are important during microbial infections and also in regulating both metabolic processes and mucosal immune responses. We review the functions of the different inflammasome complexes and discuss how aberrations in them are implicated in the pathogenesis of human diseases.  相似文献   

6.
Avian influenza virus strain H5N1 is a highly patho- genic type A influenza virus that has caused several outbreaks of severe poultry plagues in the past. H5N1 preferentially binds to receptors with α2-3 linked sialic acids on the surface of avian epithe…  相似文献   

7.
8.
给出了PolvdiakD2=D×D上小-Hankel算子Hψ:H2(T2)→ 范数估计,即‖Hψ‖=dis(ψ,H∞ L∞(T)+L∞ H∞(T)),再结合对偶关系得出了H10(T2)的分解,即 f∈H10(T2),存在{Fi}∞1,{Gi}∞1∈H2(T2)使得f=∑FiGi且该函数级数按H3范数收敛于f.  相似文献   

9.
10.
11.
Structure of the fibronectin type 1 module   总被引:2,自引:0,他引:2  
M Baron  D Norman  A Willis  I D Campbell 《Nature》1990,345(6276):642-646
The rapid accumulation of sequence data has provided insight into the evolution of proteins and led to the identification of 'mosaic proteins'. These proteins have evolved by duplication, insertion and deletion of a common pool of structural units or modules, yet their biological functions are diverse. They are involved in cell adhesion and migration, embryogenesis and the pathways of blood clotting, fibrinolysis and complement. The modular units are defined by 'consensus sequences' which often include conserved disulphide bonds. Despite the available sequence information, little is known of the tertiary structure of mosaic proteins. If, however, the 'consensus structure' of the modules were known, valuable structural information could be inferred about a wide variety of proteins and biological systems. An important mosaic protein is fibronectin, an extracellular matrix protein that consists of three types of module (see refs 3, 7 for reviews). Here we describe the structure of the fibronectin type 1 module which appears twelve times in fibronectin and is also found in factor XII and tissue plasminogen activator. The module was produced using a yeast expression system and the structure was determined in solution using 1H NMR. This methodology promises to be extremely powerful in the investigation of modules from a wide range of mosaic proteins.  相似文献   

12.
13.
Most common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence the phenotype. Genome-wide association (GWA) studies have identified more than 600 variants associated with human traits, but these typically explain small fractions of phenotypic variation, raising questions about the use of further studies. Here, using 183,727 individuals, we show that hundreds of genetic variants, in at least 180 loci, influence adult height, a highly heritable and classic polygenic trait. The large number of loci reveals patterns with important implications for genetic studies of common human diseases and traits. First, the 180 loci are not random, but instead are enriched for genes that are connected in biological pathways (P = 0.016) and that underlie skeletal growth defects (P?相似文献   

14.
Yeast and mammalian ras proteins have conserved biochemical properties   总被引:2,自引:0,他引:2  
Mammalian ras oncogenes encode polypeptides of relative molecular mass (Mr) 21,000 (p21) which bind GTP and GDP. Oncogenic ras-encoded proteins differ from their normal homologues by an amino acid substitution for Gly 12, Ala 59 or Gln 61. Recently, we and others have observed that normal p21, encoded by the Ha-ras gene, has a GTP hydrolytic activity that is reduced by the oncogenic substitutions Val 12 or Thr 59. The yeast Saccharomyces cerevisiae contains two ras-related genes, RASsc1 and RASsc2, the expression of either of which is sufficient for viability. RASsc1 and RASsc2 encode proteins of 309 (SC1) and 322 (SC2) residues which are 62% homologous to mammalian p21 in their 172-amino acid N-terminal sequences. We report here that the N-terminal domain of SC1 binds GTP and GDP and has a GTP hydrolytic activity that is reduced in the variants SC1[Thr 66] and SC1[Leu 68] which are analogous to oncogenic Ha[Thr 59] and Ha[Leu 61], respectively. These results suggest that yeast and mammalian ras proteins have similar biochemical and possibly biological functions.  相似文献   

15.
Krojer T  Sawa J  Schäfer E  Saibil HR  Ehrmann M  Clausen T 《Nature》2008,453(7197):885-890
All organisms have to monitor the folding state of cellular proteins precisely. The heat-shock protein DegP is a protein quality control factor in the bacterial envelope that is involved in eliminating misfolded proteins and in the biogenesis of outer-membrane proteins. Here we describe the molecular mechanisms underlying the regulated protease and chaperone function of DegP from Escherichia coli. We show that binding of misfolded proteins transforms hexameric DegP into large, catalytically active 12-meric and 24-meric multimers. A structural analysis of these particles revealed that DegP represents a protein packaging device whose central compartment is adaptable to the size and concentration of substrate. Moreover, the inner cavity serves antagonistic functions. Whereas the encapsulation of folded protomers of outer-membrane proteins is protective and might allow safe transit through the periplasm, misfolded proteins are eliminated in the molecular reaction chamber. Oligomer reassembly and concomitant activation on substrate binding may also be critical in regulating other HtrA proteases implicated in protein-folding diseases.  相似文献   

16.
Musset B  Smith SM  Rajan S  Morgan D  Cherny VV  Decoursey TE 《Nature》2011,480(7376):273-277
The ion selectivity of pumps and channels is central to their ability to perform a multitude of functions. Here we investigate the mechanism of the extraordinary selectivity of the human voltage-gated proton channel, H(V)1 (also known as HVCN1). This selectivity is essential to its ability to regulate reactive oxygen species production by leukocytes, histamine secretion by basophils, sperm capacitation, and airway pH. The most selective ion channel known, H(V)1 shows no detectable permeability to other ions. Opposing classes of selectivity mechanisms postulate that (1) a titratable amino acid residue in the permeation pathway imparts proton selectivity, or (2) water molecules 'frozen' in a narrow pore conduct protons while excluding other ions. Here we identify aspartate 112 as a crucial component of the selectivity filter of H(V)1. When a neutral amino acid replaced Asp?112, the mutant channel lost proton specificity and became anion-selective or did not conduct. Only the glutamate mutant remained proton-specific. Mutation of the nearby Asp?185 did not impair proton selectivity, indicating that Asp?112 has a unique role. Although histidine shuttles protons in other proteins, when histidine or lysine replaced Asp?112, the mutant channel was still anion-permeable. Evidently, the proton specificity of H(V)1 requires an acidic group at the selectivity filter.  相似文献   

17.
Role of histone H2A ubiquitination in Polycomb silencing   总被引:1,自引:0,他引:1  
Wang H  Wang L  Erdjument-Bromage H  Vidal M  Tempst P  Jones RS  Zhang Y 《Nature》2004,431(7010):873-878
  相似文献   

18.
In order to obtain rice monotelosomic, the progeny of 24 telotrisomics, derived from an indica rice variety, Zhongxian 3037, were screened. The variants that differed morphologically from the diploids and the original primary trisomics as well as the telotrisomics were collected for cytological identification. The variants with 24 chromosomes were selected according to the prometaphase chromosomes. From these variants, three monotelosomies with one chromosome arm deletion in each were verified by fluorescence in situ hybridization (FISH) using a rice centromeric BAC clone of 17p22 as a marker probe. The three monotelosomics were derived from telotrisomic 1S, 4L and 11L, respectively. Further identification was conducted on the prometaphase or pachytene chromosomes of the three variants, which were probed with the same centromeric BAC clone together with the corresponding chromosome arm specific makers, a0059H02 (on the short arm of chromosome 1), a0034E24 (on the long arm of chromosome 4), and a0071H11 (on the long arm of chromosome 11). The results indicated that the telocentric chromosomes in the three monotelosom. ics were derived from their respective corresponding telotrisomics. According to the telocentric chromosomes of the variants, they were monotelosomic 1S (one long arm of chromosome 1 was lost), monotelosomic 4L (one short arm of chromosome 4 was lost) and monotelosomic 11L (one short arm of chromosome 11 was lost), respectively.  相似文献   

19.
Many pathological processes, including those causing allergies and autoimmune diseases, are associated with the presence of specialized subsets of T helper cells (TH1 and TH2) at the site of inflammation. The diversity of TH1 and TH2 function is not predetermined but depends on signals that drive the cells towards either subset. Histamine, released from effector cells (mast cells and basophils) during inflammatory reactions can influence immune response. Here we report that histamine enhances TH1-type responses by triggering the histamine receptor type 1 (H1R), whereas both TH1- and TH2-type responses are negatively regulated by H2R through the activation of different biochemical intracellular signals. In mice, deletion of H1R results in suppression of interferon (IFN)-gamma and dominant secretion of TH2 cytokines (interleukin (IL)-4 and IL-13). Mutant mice lacking H2R showed upregulation of both TH1 and TH2 cytokines. Relevant to T-cell cytokine profiles, mice lacking H1R displayed increased specific antibody response with increased immunoglobulin-epsilon (IgE) and IgG1, IgG2b and IgG3 compared with mice lacking H2R. These findings account for an important regulatory mechanism in the control of inflammatory functions through effector-cell-derived histamine.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号