首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
用化学镀的方法制备了CuBe/绝缘层/NiCoP复合结构丝,用2 A直流电流退火2 min.研究了退火对样品巨磁阻抗效应的影响,发现退火大幅度提高了样品的巨磁阻抗效应,最大磁阻抗比率ΔZ/Z由制备态时的42.3%提高到693.1%,增加了15.4倍.利用复数磁导率和等效电路研究了样品的磁化特性,并对电流退火增强复合结构丝巨磁阻抗效应的机理作了分析.电流退火消除内应力且改变样品的磁结构,使得退火样品的Δμ′和Δμ″远大于制备态样品,增强了样品的巨磁阻抗效应.  相似文献   

2.
化学镀BeCu/NiFeB丝巨磁阻抗效应研究   总被引:2,自引:1,他引:1  
用化学镀的方法,在100 μm BeCu丝上沉积了NiFeB薄膜镀层.研究了退火温度和驱动电流频率对样品巨磁阻抗效应的影响.观察到200 ℃退火后样品最大巨磁阻抗效应为33%.在BeCu丝与NiFeB镀层之间加入绝缘层后,最大巨磁阻抗效应提高到83%.  相似文献   

3.
用化学镀方法在铜丝上镀NiFeP薄膜,采用电流退火的方法对复合结构丝进行热处理.电流退火使薄膜感生圆周磁各向异性,从而使样品磁阻抗效应有明显提高.退火电流及时间有一个最佳值,当退火电流为2.8 A,退火时间为2 min时,样品在475 kHz时的磁阻抗效应为53.2%.  相似文献   

4.
在流动气体中,用焦耳热退火方法研究了单辊快淬技术制得的Fe36Co36Nb4Si4.8B19.2非晶薄带经32A/mm2电流退火10 min的巨磁阻抗效应.结果表明:保护气体的流速对材料的巨磁阻抗曲线有明显的影响,当保护气体的流速为1.8 m/s时出现了尖刺巨磁阻抗现象,灵敏度达到了最大值5 538%/(A.m-1).  相似文献   

5.
采用高频感应加热熔融快淬法制各了Fe_(73.5)Cu_(1.0)Nb_(3.0)Si_(13.5)B_9非晶玻璃包裹丝.首先对制备态包裹丝进行电流退火,结果发现电流密度为4.2×10~7 A/m~2时,退火得到的玻璃包裹丝性能最佳,原因是此时有合适的纳米晶体积比例.进而研究了长度对其磁性和巨磁阻抗效应的影响.结果表明,随着长度的减小,微丝的各项异性场增大,磁阻抗比减小,采用退磁场模型给予了合理解释.  相似文献   

6.
采用高频感应加热熔融快淬法制备了Co_(81.5)Fe_(4.5)Mo_2B_(12)玻璃包裹丝,研究了真空条件下退火对细丝巨磁阻抗效应及非对称性的影响.结果显示,随着退火温度的升高,玻璃包裹丝的巨磁阻抗效应先增大后减小.退火温度为250℃时,巨磁阻抗效应最明显;退火后样品的磁阻抗曲线对称性大都有所改善;退火温度为330℃时,磁阻抗曲线对称性遭到破坏,可能是磁各向异性降低所引起的.  相似文献   

7.
钴基玻璃包裹丝软磁性能的优化   总被引:1,自引:0,他引:1  
采用高频感应加热熔融快淬法制备钴基玻璃包裹丝,研究了包裹丝的直径和退火电流密度对于巨磁阻抗效应(Giant Magnetoimpedance,GMI)和磁场灵敏度的影响.结果显示,随着包裹丝直径的增大,GMI和磁场灵敏度先增大后减小,当包裹丝总直径为29μm时,软磁性能最好.用此直径的包裹丝进行不同电流密度的电流退火处理,发现当退火电流密度为120A/mm~2时,磁场灵敏度最高为602%/Oe(1 Oe=1000/(4π)A/m).  相似文献   

8.
采用电流化学镀工艺,在直径为100μm的铜丝上通以150 mA的直流电流,制备了NiCoP/CuBe复合结构丝,研究了镀液pH值对复合结构丝镀层的形貌、镀速、成分、磁性能和GMI效应的影响.研究发现,镀液pH值的改变会引起致密性、镀速、镀层成分和磁性能的变化,结果影响到材料的磁阻抗比和特征频率.pH值为8.4时,得到最大阻抗比为868%.  相似文献   

9.
用HP4294A型阻抗分析仪测量了不同直径的玻璃包裹铁基纳米晶丝在2种驱动方式下的巨磁阻抗.结果发现,纵向和环向2种驱动方式下晶丝的最佳退火温度分别为580℃和560℃.2种驱动方式下,巨磁阻抗比值都随细丝直径的增大而增大;环向驱动方式下,巨磁阻抗频谱曲线峰值对应的驱动频率随细丝直径的增大而减小;纵向驱动方式下,不同直径晶丝的巨磁阻抗频谱曲线峰位频率没有明显的变化.  相似文献   

10.
用熔融抽拉法制备了Co68.25Fe4.5Si12.25B15非晶丝材料.交变电流频率为100kHz时,分别测量了制备态、纵向张应力和纵向交流电流焦耳热处理时的巨磁阻抗(GMI)效应,发现了一些在给定条件下的新的GMI图线,并且在交流电流热处理后发现了具有较高磁场灵敏度的GMI效应.利用GMI效应的有关理论对不同GMI图线分别进行分析,深化了对GMI效应的物理机制及产生过程的认识.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号