首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
采用经典分子动力学研究了275 K至305 K时甲烷水合物体系的甲烷分子、水分子的扩散系数以及CH_4-CH_4、CH_4-H_2O、H_2O-H_2O、H_2O-CH_4的径向分布函数、配位数和氢键数等结构性质.结果表明,甲烷水合物的分子扩散和局部结构明显地受到温度的影响.甲烷分子间和水分子间倾向各自相互聚集,引起四种类型的配位数差异很大.  相似文献   

2.
采用分子动力学(MD)模拟研究了0.1 MPa、298~318 K条件下甲醇、乙醇、1-丙醇在水中的无限稀释扩散系数(D12),并通过径向分布函数、配位数、平均氢键数的计算,分析了二元流体的微观结构和分子间的相互作用。结果表明,模拟所得的无限稀释扩散系数与实验值符合。另外,随着温度升高,径向分布函数的峰高、醇分子与水分子之间的配位数以及醇-水的平均氢键数均减小,表明在较高温度下醇分子周围堆积的水分子数减少,醇分子和水分子之间的相互作用力降低,因而使扩散系数增大,这些结果从微观角度解释了扩散系数的变化规律。  相似文献   

3.
运用分子动力学模拟方法,研究了甲烷与水受限在碳纳米管中的一些性质.计算机模拟发现水分子和甲烷径向密度的非均匀分布.根据径向密度分布情况,将碳纳米管中的甲烷与水分层,分别计算了甲烷分子与水分子的扩散系数和平均氢键数.模拟结果表明:受限在碳纳米管内部中的甲烷趋向在管壁积聚,但当甲烷浓度较高时,发现在碳纳米管中央有部分甲烷分子积聚.  相似文献   

4.
采用H artree-Fork,4种DFT(BLYP,B3LYP,M PW 1PW 91,SVWN 5)和M P2方法研究了甲烷水合物结构-I的氢键和范德华能.甲烷分子取HF/6-31G(d,p)优化构型,水分子选用ST 2模型.水分子间的氢键能Ehb(l)和甲烷-水分子间的范德华能EvdW(l)作为正十二面体边长l的函数,用HF/6-31G(d,p)和4种DFT方法做计算,保持水分子和甲烷分子的构型不变,在几个关键点上选用M P2方法做了计算.计算中选用6-31G(d,p)基组,分别用完全平衡校正和不完全校正法进行校正,这两种方法给出了基组重叠误差(BSSE)的上限和下限.DFT/B3LYP方法计算的氧-氧距离RO-O=0.280 nm和碳-氧距离RC-O=0.392 nm最接近于实验值0.282 nm和0.395 nm.所有计算方法(HF,DFT,M P2)都表明,甲烷水合物结构-I是一个由超强氢键(30~36 kJ/m o l)组成的稳定结构,其氢键能远大于水分子二聚体和冰I4晶格中的氢键能((-22.6±2.9)kJ/m o l和(-21.7±0.5)kJ/m o l).这些数据为气体水合物的Lennand-Jones和K ihara势能函数提供了基本参数,可用于气体水合物的分子动力学模拟.  相似文献   

5.
采用Hartree-Fork,4种DFT(BLYP,B3LYP,MPW1PW91,SVWN5)和MP2方法研究了甲烷水合物结构-Ⅰ的氢键和范德华能.甲烷分子取HF/6-31G(d,p)优化构型,水分子选用ST2模型.水分子间的氢键能Ebb(l)和甲烷-水分子间的范德华能Evdw(l)作为正十二面体边长l的函数,用HF/6-31G(d,p)和4种DFT方法做计算,保持水分子和甲烷分子的构型不变,在几个关键点上选用MP2方法做了计算.计算中选用6-31G(d,p)基组,分别用完全平衡校正和不完全校正法进行校正,这两种方法给出了基组重叠误差(BSSE)的上限和下限.DFT/B3LYP方法计算的氧-氧距离Ro-o=0.280 nm和碳-氧距离Rc-o=0.392 nm最接近于实验值0.282 nm和0.395 nm.所有计算方法(HF,DFT,MP2)都表明,甲烷水合物结构-Ⅰ是一个由超强氢键(30~36 kJ/mol)组成的稳定结构,其氢键能远大于水分子二聚体和冰Ⅰ4晶格中的氢键能((-22.6±2.9)kJ/mol和(-21.7±0.5)kJ/mol).这些数据为气体水合物的Lennand-Jones和Kihara势能函数提供了基本参数,可用于气体水合物的分子动力学模拟.  相似文献   

6.
对含有动力学抑制剂的水合物体系中的氢键,应用量量子化学MP2从头计算方法在6-31G(d)的基组水平上进行几何优化,计算了水分子之间和抑制剂与水分子之间形成的氢键键长、电子密度和相互作用能,从量子化学角度探讨了水合物动力学抑制剂的作用机理.计算结果表明动力学抑制剂与水分子形成的氢键明显强于水分子之间形成的氢键,抑制剂通过与水分子形成氢键阻止了水合物进一步生成.  相似文献   

7.
甲烷水合物具有明显的拉曼光谱特征,但会受到压力和组成的影响,压力主要影响甲烷水合物拉曼峰强度,而组成会影响甲烷水合物的类型以及特征峰的拉曼位移.流体包裹体中甲烷水合物形成时的温度和压力是流体包裹体分析中的重要参数.采用原位拉曼光谱技术对南黄海盆地栖霞组地层石英脉中的天然CH4-H2O体系流体包裹体进行了分析.实验结果表明,利用激光拉曼光谱技术可以获得包裹体中甲烷水合物的拉曼光谱信号.该研究包裹体中的水合物为Ⅰ型甲烷水合物,其形成温度为7.5℃(280.65 K);结合甲烷水合物相平衡关系计算得到包裹体中甲烷生成的压力为5.6 MPa.原位拉曼光谱技术不仅可以准确识别甲烷水合物的类型,而且也可定量获取包裹体中水合物的生成条件.  相似文献   

8.
利用恒温压力搜索法在273.60~290.62K温度范围内测量了甲烷和甲基环己烷体系水合物的形成条件,实验结果表明该体系的水合物(H型)相平衡压力比甲烷体系的水合物(Ⅰ型)相平衡压力低1.0MPa以上.根据Langmuir的等温吸附理论,给出了H型气体水合物相平衡计算数学模型.计算结果表明该模型可较好地预测实验体系水合物(H型)的形成条件.  相似文献   

9.
针对超临界水对催化剂成核过程的影响机制问题,采用分子动力学模拟方法系统研究K2,CO3在不同温度和密度的超临界水中的成核过程.通过对体系的相互作用能、径向分布函数、配位数及体系氢键网络结构变化的分析,揭示了在K2,CO3成核过程中K+、CO32-与水分子间的相互作用机理.结果表明:在超临界态下,随着温度的升高、密度的降低,水溶液体系氢键结构破坏,水分子与K+和CO32-的作用急剧降低,K+和CO32-在静电作用下可冲破水分子的静电屏蔽,从而碰撞聚合形成离子对,继而进一步团聚成核;体系温度越高、密度越小,K2,CO3越易形成小而分散的团簇.  相似文献   

10.
利用恒温压力搜索法在273.60~290.62K温度范围内测量了甲烷和甲基环已烷体系水合物的形成条件,实验结果表明该体系的水合物(H型)相平衡压力比甲烷体系的水合物(I型)相平衡压力低1.0MPa以上。根据Langmuir的等温吸附理论,给出了H型气体水合物相平衡计算数学模型。计算结果表明该模型可较好地预测实验体系水合物(H型)的形成条件。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号