首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
为了研究氯盐环境对预应力混凝土中钢绞线耐久性的影响,进行了持荷钢绞线在不同浓度氯盐溶液环境中加速腐蚀试验。对腐蚀钢绞线试件的质量损失及静力拉伸性能进行研究,分析氯盐溶液浓度对腐蚀钢绞线腐蚀程度及性能退化特性的影响;并提出了钢绞线腐蚀速率计算公式。结果表明:氯盐腐蚀下钢绞线表面呈现片状和带状蚀坑分布,腐蚀钢绞线的屈服荷载和极限荷载分别降低了1.66%~2.51%和3.38%~5.09%,各组试件平均质量损失率为1.42%~3.24%,腐蚀速率为0.040~0.091 mm/a。试验腐蚀条件下钢绞线腐蚀程度与氯盐溶液浓度成正比;但各腐蚀钢绞线的名义弹性模量降低幅度不大。  相似文献   

2.
为了研究氯盐环境对预应力混凝土中钢绞线耐久性的影响,本文进行了持荷钢绞线在不同浓度氯盐溶液环境中加速腐蚀试验,对腐蚀钢绞线试件的质量损失及静力拉伸性能进行研究,分析氯盐溶液浓度对腐蚀钢绞线腐蚀程度及性能退化特性的影响,并提出了钢绞线腐蚀速率计算公式。结果表明:氯盐腐蚀下钢绞线表面呈现片状和带状蚀坑分布,腐蚀钢绞线的屈服荷载和极限荷载分别降低了1.66%~2.51%和3.38%~5.09%,各组试件平均质量损失率为1.42%~3.24%,腐蚀速率为0.040-0.091mm/a。本试验腐蚀条件下钢绞线腐蚀程度与氯盐溶液浓度成正比,但各腐蚀钢绞线的名义弹性模量降低幅度不大。  相似文献   

3.
锈蚀钢绞线的静力拉伸断裂特性   总被引:2,自引:0,他引:2  
通过制作专门的掺盐预应力混凝土构件获取锈蚀钢绞线试样,借助宏观观察和微观电镜扫描手段研究了试样的静力拉伸断裂特性,分析了锈蚀对钢绞线静力拉伸断裂特性的影响问题.研究结果表明:当钢绞线钢丝锈蚀坑底部珠光体团的位向与钢丝纵轴线间的夹角较小时,会形成延性的铣刀式断口或杯锥式断口;反之,当该夹角较大时,会形成脆性的劈裂式断口或劈裂-铣刀式断口;钢绞线钢丝锈蚀坑处珠光体团的位向是一个概率问题,钢绞线的总体锈蚀程度越大,锈蚀坑与上述夹角较大珠光体团相遇的概率也越大,钢丝出现脆性断裂的概率也越大,整根钢绞线的脆性断裂特征也越明显.  相似文献   

4.
为了研究含裂纹高强镀锌钢丝在应力腐蚀作用下的受拉力学性能,根据应力腐蚀试验、静力拉伸试验、电镜实验和有限元模拟的研究数据,建立了含裂纹高强钢丝的力学模型,给出了模型参数的计算方法,并对含裂纹钢丝的应力腐蚀机理和静力受拉性能进行了研究.结果表明,在静力拉伸破坏试验中,应力腐蚀下的含裂纹高强镀锌钢丝的决定性破坏因素是裂纹,刻痕的应力集中系数远大于正常腐蚀的蚀坑,钢丝力学性能的变化是由初始裂纹进一步腐蚀而引起的;当钢丝腐蚀较严重时,钢丝力学性能主要由裂纹及其底部蚀坑决定.  相似文献   

5.
为了研究桥梁含裂纹拉索钢丝的腐蚀损伤机理和受拉力学特性,以含预置裂纹的腐蚀高强钢丝为研究对象,采用电弧线切割方法、中性盐雾腐蚀试验、拉伸试验、电镜试验和有限元分析,开展相关内容研究。提出了考虑中性盐雾腐蚀影响的含裂纹高强钢丝拉伸受力性能的评价方法。通过试验与理论研究分析表明:刻痕的应力集中系数远大于正常腐蚀蚀坑的系数,钢丝力学性能的变化是由于初始裂纹进一步腐蚀而引起,特别在腐蚀初期,钢丝处于非常不利的阶段,其受拉性能较低。建立的初始裂纹钢丝有限元模型,能较好地描述中性盐雾腐蚀试验和静力拉伸试验得出的质量损失率、截面面积损失率及极限强度的关系。  相似文献   

6.
斜拉桥拉索钢丝的力学性能对腐蚀极为敏感,腐蚀使钢丝表面产生的蚀坑会导致应力集中,削弱钢丝局部的疲劳抵抗能力,从而吸引疲劳裂纹从这里成核,这通常是斜拉桥拉索承载力和使用寿命降低的直接原因。为研究钢丝蚀坑尺寸的影响,基于数值模拟的方法,建立三维蚀坑模型来探讨蚀坑的长、宽、深对应力集中的影响。采用ANSYS建立高强钢丝的有限元实体模型,基于蚀坑的不同尺寸比例,即蚀坑深宽比、长宽比,模拟了深窄形和开放形蚀坑。通过有限元软件计算所得数据拟合出蚀坑尺寸因素与应力集中系数的曲线,根据所得曲线,拟合出蚀坑处应力集中系数随不同尺寸比变化的近似计算公式。基于蚀坑的应力分布图和应力集中系数随尺寸比的变化规律,探讨了蚀坑的长、宽、深对应力集中效应以及蚀坑处应力分布的影响,并横向比较了3个尺寸因素对应力集中效应的影响程度,结果表明,高强钢丝应力集中系数会随蚀坑深宽比或宽深比的增加而增加,而随蚀坑长度的增加而减小。此外,蚀坑长度的变化对高强钢丝应力集中系数的影响最为显著,蚀坑深度次之,而蚀坑宽度的影响最弱。  相似文献   

7.
为探究和预测交变荷载和腐蚀环境耦合作用下拉索钢丝的腐蚀行为,通过加速试验制定不同锈蚀等级下的钢丝锈蚀图例,测量了相应锈蚀等级下锈蚀钢丝失重量、名义抗拉强度和断后延伸率,使用图像小波分解技术探讨了HSV和RGB色彩模式在表征钢丝锈蚀图像整体颜色与局部边缘轮廓特征方面的适应性,分析了不同锈蚀等级下钢丝锈蚀图像小波系数分量的L1范数均值和L1范数百分比与锈蚀钢丝平均失重量的相关性,建立了钢丝平均失重量的预测模型。研究发现:交变荷载和盐雾环境耦合作用下拉索钢丝呈现出明显的局部坑蚀现象,且钢丝名义抗拉强度和断后延伸率均随锈蚀失重量的增加而减小;钢丝腐蚀形态的改变主要体现在腐蚀钢丝表观颜色浓度和亮度的改变,而HSV色彩模式中的饱和度分量可较好地反映钢丝锈蚀图像整体颜色的变化,RGB色彩模式中的蓝色分量可较好地反映钢丝锈蚀图像局部蚀坑周围局部亮度的变化;拉索钢丝腐蚀图像与腐蚀失重量、名义抗拉强度之间存在良好的线性回归关系,可用于预测钢丝锈蚀失重量和名义抗拉强度。  相似文献   

8.
为了模拟拉索在实际环境中的腐蚀演化进程并探究氯离子在索体腐蚀过程中的催化作用,基于金属电化学腐蚀的基本原理建立了模拟拉索钢丝电化学腐蚀进程的元胞自动机模型,将腐蚀系统中的关键元素抽象成4种元胞类型,并将整个拉索腐蚀系统离散成500×500的元胞网格,通过定义的局部规则模拟钢丝在介观尺度上的腐蚀演化过程,分析了腐蚀性溶液浓度和腐蚀概率对钢丝腐蚀进程的影响,研究发现:当元胞自动机特征参数选取合理,并适当加大中心元胞与切线方向上的邻居元胞的接触概率,蚀坑形貌也就越接近真实形貌。元胞自动机模拟产生的蚀坑形貌与实际蚀坑形貌十分接近;钢丝腐蚀面积随时间不断变大的同时腐蚀速率也将逐步增快,表明一旦钢丝腐蚀出现蚀坑,钢丝腐蚀面积越来越大的同时其腐蚀速率也将越来越快;在拉索腐蚀的过程中具有氯离子的腐蚀性元胞具有主导地位,无氯离子的腐蚀元胞的腐蚀概率对钢丝腐蚀速率的影响不大,控制并减少周边环境中氯离子的浓度是减缓拉索腐蚀的有效途径。  相似文献   

9.
预应力筋应力腐蚀后预应力混凝土梁受力性能研究   总被引:1,自引:0,他引:1  
为研究预应力筋应力腐蚀对预应力混凝土梁承载力和耐久性的影响,设计制作了7根用人工坑蚀模拟预应力筋受应力腐蚀的预应力混凝土梁,进行静力受力性能试验。试验结果表明:预应力筋坑蚀后的预应力混凝土梁的开裂荷载、极限荷载低于普通预应力混凝土梁,并随坑蚀深度的增大而下降;增大预应力度可提高应力腐蚀预应力筋混凝土梁的开裂荷载;增大非预应力钢筋的配筋率可提高预应力混凝土梁的开裂荷载、极限荷载;随着坑蚀的增大,构件抗弯刚度迅速下降;提高预应力度可减缓构件抗弯刚度的下降,而增大非预应力钢筋的配筋率对抗弯刚度的影响则较小。根据该文预应力筋坑蚀后的预应力混凝土梁极限承载力计算公式得到的理论值与实测值相吻合,可供工程实践参考。  相似文献   

10.
基于Love曲杆理论建立钢丝静力拉伸模型,由外荷载作用下单根钢丝平衡方程推导出钢丝轴力、弯矩、扭矩计算公式以及钢绞线截面弹性模量、抗弯刚度计算公式.利用Fortran编写程序,考察轴力变化时,钢丝螺旋角及钢绞线弹性模量、抗弯刚度等截面特性的变化规律.进一步研究了钢绞线弹性模量变化对结构受力性能影响及抗弯刚度变化对基频法计算拉索内力的影响.结果表明:随着钢绞线总轴力增加,钢丝螺旋角逐渐减小,钢绞线弹性模量和抗弯刚度逐渐增加;在外层钢丝螺旋角为0°即外层钢丝被拉直后,钢丝螺旋角和钢绞线弹性模量均不再变化;随着钢绞线总轴力进一步增加,钢丝半径和钢绞线抗弯刚度由于泊松效应影响略有减小.  相似文献   

11.
设计了不同偏心率、混凝土强度等级、套箍指标和配骨指标的6根钢骨钢管混凝土短柱试件,详细分析了试件在偏心受压下的破坏过程和破坏特征。试验表明:小偏心钢骨钢管混凝土柱的初始破坏是从近偏心受压侧的钢管受压屈服开始,最终破坏是由于混凝土膨胀引起了钢管局部的屈曲所致。钢骨钢管混凝土柱中的钢骨可以有效的阻止混凝土的剪切斜裂缝,从而提高了钢骨钢管混凝土的延性。在钢管纵向没有达到屈服前,钢骨钢管混凝土柱横截面应变分布呈线性分布,满足平截面假定。上下端铰接的小偏心钢骨钢管混凝土柱的侧向挠度曲线接近于正弦曲线,满足标准柱的假定。随混凝土强度的提高,配骨指标和套箍指标的增加,钢骨钢管混凝土柱的竖向承载力极值均有所提高;但随着偏心距的增加,试件的竖向承载力和延性会显著降低。  相似文献   

12.
钢筋表面微区电位分布的原位测量   总被引:3,自引:0,他引:3  
应用自行研制的扫描微参比电极联机测量系统,原位测量了钢筋在模拟混凝土孔隙液中表面微区电位分布.结果表明,钢筋在纯饱和Ca(OH)2溶液中处于钝态.当溶液的pH降低和外加Cl-时,钢筋表面微区电位分布即发生变化,电位差变大,钢筋表面随之发生点腐蚀.  相似文献   

13.
钢筋非均匀锈蚀试验研究   总被引:2,自引:0,他引:2  
设计了一种新的钢筋快速锈蚀试验方案,研究了钢筋非均匀锈蚀引起的混凝土保护层胀裂问题.试验现象表明,锈后试件的钢筋表面呈现明显坑蚀特点,且近保护层一侧的钢筋锈蚀更为严重;根据试验数据,利用统计回归分析的方法,给出了混凝土保护层出现可见裂缝时的钢筋锈蚀率与混凝土强度、钢筋直径及保护层厚度间的经验公式;数据分析表明,相对保护层厚度是决定混凝土开裂时钢筋锈蚀率的主要因素,而混凝土等级和钢筋直径对它的影响较小.  相似文献   

14.
基于氯离子Fick扩散定理和法拉第定律,通过研发的四电极传感器体系获得含氯离子混凝土模拟液中腐蚀电流密度规律以及混凝土中氯离子时变扩散系数,建立氯离子时变扩散钢筋腐蚀速率模型;在此基础上基于弹性断裂力学和坑蚀模型,建立坑蚀锈胀裂缝时变可靠度模型,采用Monte Carlo方法求得钢筋混凝土锈胀裂缝时变可靠度.研究表明,基于研发的MnO2参比电极四电极传感器体系平均腐蚀电流密度随氯离子浓度增加而线性增加,随时间增加趋于恒定.采用考虑氯离子时变扩散钢筋腐蚀电流在服役期间钢筋腐蚀电流密度减小.坑蚀锈胀裂缝开始时间在第10~15年;随保护层厚度和钢筋直径增加以及表面氯离子浓度减小,钢筋混凝土坑蚀裂缝宽度减小.研究结果对氯离子诱发的钢筋混凝土坑蚀腐蚀裂可靠度预测具有重要的参考价值.  相似文献   

15.
若干无机缓蚀剂对混凝土中钢筋的阻锈作用   总被引:3,自引:0,他引:3  
通过含NaCl介质溶液的浸泡实验,利用电化学实验检测技术,观测和比较了NaNO2等8种无机缓蚀剂添加于混凝土中对钢筋的阻锈作用,结果表明,在本实验条件下,NaNO2等缓蚀剂对钢筋明显的阻锈作用,在pH=9.50%,含10%NaCl的混凝土模拟液中,外加NaNO2后,混凝土中钢筋的腐蚀电位正移,腐蚀电流可下降至未加缓蚀剂的1/6,缓蚀剂的加入不同程度地提高了钢筋耐点蚀的性能。  相似文献   

16.
为了研究桥梁缆索高强钢丝均匀腐蚀及点蚀的规律,采用酸性盐雾试验制作了6种共30根不同腐蚀程度的钢丝试件,通过质量分析、三维扫描等手段,研究了腐蚀高强钢丝均匀腐蚀深度、点蚀深度的演变规律.试验结果表明:均匀腐蚀深度随腐蚀时长的变化遵循幂函数规律,均匀腐蚀深度的变异系数随腐蚀时长减小;钢丝的点蚀深度服从正态分布,最大点蚀深度服从极值I型分布.最后,建立了均匀腐蚀深度与最大点蚀深度的预测模型,并运用于具体实桥分析预测中.  相似文献   

17.
进行了6个配置高强度、低弹性模量、高延性的不锈钢钢筋混凝土柱的拟静力试验,并与普通钢筋柱对比,研究其破坏形态、滞回曲线、骨架曲线、位移延性等抗震性能和承载力,并分析轴压比和纵筋配筋率的影响。结果表明:不锈钢试件均发生柱根部正截面压弯破坏;其滞回曲线与普通钢筋试件的相似,但耗能能力更好;不锈钢试件的位移延性系数比普通钢筋试件的略低,但其屈服位移和极限位移分别比普通钢筋试件的大21%~24%和2%~19%;不锈钢试件的受弯承载力计算值和试验值之比与普通钢筋试件的相近,平均为0.79,具有一定的安全储备;当箍筋间距大于100mm时,其约束作用对试件承载力的提高不明显。  相似文献   

18.
钢与混凝土界面的基本物理参数测试   总被引:1,自引:0,他引:1  
为定量了解组合梁中钢与混凝土界面上粘接力及摩擦系数等基本物理参数的大小,通过一系列试验测试了工程上常用的钢与混凝土界面涂装形式的黏结强度和摩擦系数.设计制作了16组试件测试钢与混凝土之间的抗剪黏结强度,考虑了试件界面尺寸效应、不同界面涂装形式及不同的法向压力的影响;设计制作了6组试件测试不同界面涂装形式下的钢与混凝土界面抗拉黏结强度;设计制作了6组试件测试了不同界面涂装形式下钢与混凝土界面的静、动摩擦系数.研究表明:界面尺寸效应对钢与混凝土界面的强度影响不大;界面涂装形式对界面的黏结强度影响较大,抗剪强度在0.04~0.28 MPa之间,抗拉强度在0.38~0.82 MPa之间,静摩擦系数在0.73~1.06之间,动摩擦系数在0.5~0.74之间;法向压力对界面的剪切黏结强度影响较大,且满足库仑摩擦模型.  相似文献   

19.
结合自密实混凝土和自应力混凝土的特点,配制出有自密实性的自应力混凝土.将其应用于钢管混凝土内,不仅可以解决钢管混凝土浇注不密实,混凝土干缩、徐变等问题,而且还可以解决自应力混凝土约束不足的问题,试验通过6个钢管自应力自密实混凝土短柱试件研究了钢管约束下自应力混凝土的膨胀性能.分析结果表明,徐变变形和弹性变形占有效自由膨胀变形的2/3左右,这部分变形在计算中不容忽视.膨胀稳定后,初始自应力值能达到3~6MPa,通过18个试件研究了短柱轴压力学性能,试验结果表明:在初始应力的影响下,钢管自应力混凝土的弹性工作阶段比普通钢管混凝土大10%左右,承载力也有5%~20%的提高.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号