首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 146 毫秒
1.
为了让液压系统蓄能器高效节能地工作,以蓄能器总容积为研究对象,详细介绍了大型冶金液压系统蓄能器站的设计过程,总结和比较了不同工况下蓄能器总容积的计算方法,并对所选蓄能器动态特性参数进行仿真研究,绘制出蓄能器在两种不同温度下的压力、温度、容积及工作循环图。从设计和仿真结果可知,蓄能器总容积按照理想气体绝热过程考虑结果偏小;按照不可逆多变过程计算并进行温度校正所得结果是最符合气体的实际工作过程。仿真结果验证了设计方法和数据的准确性。  相似文献   

2.
文章研究了采用蓄能器组来有效抑制工程车辆液压驱动系统压力冲击的方法,建立了工程机械液压驱动系统加入蓄能器组后的仿真模型,为工程机械液压驱动系统中蓄能器的选择和匹配以及深入研究泵控马达系统调速特性和动态特性在有、无蓄能器情况下的不同提供了参考;利用AMESim仿真软件与工程车辆多功能试验台进行仿真分析与实验验证。结果表明,对于工作在剧烈波动载荷下的工程车辆液压系统,应根据系统的压力变化幅度配置不同固有频率的蓄能器组,并分段配置各蓄能器的参数来加宽吸收压力波动的频率宽度和压力冲击范围。  相似文献   

3.
本文以63公斤米液压锤为模拟样机,对其液压系统的动态特性尤其是响应时间进行了理论分析和实验测试.首先,将整个系统划分为若干个环节,分别建立其数学模型,然后采用四阶龙格——库塔法进行了仿真计算,并通过实验对系统的动态响应进行了测试.通过分析理论计算和实验结果.对提高系统的动态响应,提出了几点建议.  相似文献   

4.
针对GM1 400×800高压辊磨机工作时的振动冲击问题,基于动辊和液压系统力学模型,建立了高压辊磨机液压系统数学模型,计算分析了系统液阻、蓄能器初始压力和容积对系统动态特性的影响,并进行了实例验证,为液压系统的参数设计提供理论依据。研究结果表明:液阻和蓄能器容积是影响高压辊磨机动态特性的主要因素,蓄能器初始压力主要影响对辊工作间隙;液阻增大,系统超调量指数下降,响应时间指数上升;蓄能器容积增大,系统超调量线性减小,响应时间线性上升;蓄能器初始压力对系统动态特性影响不大,它和蓄能器容积共同影响柱塞的平衡位移。经分析,取液阻Cq=4×107 Ns/m5,蓄能器容积v0=0.02m3,蓄能器初始压力p0=17 MPa,系统超调量为8%,响应时间为0.1s,柱塞的平衡位移为10mm。  相似文献   

5.
液压变压器在理论上能够无节流损失地控制直线执行机构的运动速度,而且能够回收负负载的能量,为了提高液压变压器的能量利用效率,文中设计了节能系统的总效率模型,以总效率最高为目标,采用优化算法计算出液压蓄能器容积的数值,分析了气体压力在回收能量过程中的变化曲线,完成了对液压蓄能器的参数匹配;建立了节能系统的Simulink模型,采用模糊PID控制策略对负载下降时的运动速度进行控制。仿真结果表明,该控制策略能够很好地实现对负载运动速度的控制。  相似文献   

6.
为提高挖掘机的燃油经济性并降低排放,采用基于压力共轨(CPR)的配置方式构造液压混合动力挖掘机,并针对回转系统耗能大且能量回收潜力大的特点,利用Simula-tion X对回转系统建立仿真模型,分析了影响能量回收效率的主要因素.结果表明,所提出的挖掘机回转系统在制动时不仅可以有效地完成能量的回收,而且能量回收效率随液压蓄能器容积和回转系统制动前速度的增大而增加.文中还通过模拟实验对仿真得出的结论进行了验证,发现实验结果与仿真结果相吻合.  相似文献   

7.
液压蓄能式波浪能装置发电系统的特性   总被引:2,自引:0,他引:2  
分析了液压蓄能式波浪能转换器(WEC)的工作原理和优势;根据液压马达和永磁同步发电机的数学方程推导出了发电系统的4个基本特性,分析了蓄能器压力和发电机负载对转速、电压和功率的影响;针对液压蓄能式WEC发电系统的两种工作模式——恒电阻模式和恒转速模式,建立了液压蓄能式WEC发电系统的Matlab/Simulink仿真模型,并进行了仿真实验,结果验证了关于液压蓄能式WEC发电系统特性推理的正确性.  相似文献   

8.
为系统研究液压冲击器的构造、工作机理、动态特性,根据机电一体化液压冲击器的结构和原理,应用AMEsim和Simulink建立了带有计算机控制系统的机电一体化液压冲击器联合仿真模型,对机电一体化液压冲击器的冲击特性进行了仿真,详细分析了冲击活塞最大直径、氮气室初始压力、蓄能器充气压力等关键参数对液压冲击器冲击特性的影响规律.  相似文献   

9.
液驱混合动力车辆的优化节能控制算法研究   总被引:1,自引:0,他引:1  
提出了一种应用液压变压器搭建液驱混合动力车辆的设计结构,阐述了其工作原理.根据液压变压器的节能思想及其数学模型,对其排量及压力调节特性进行分析,得出系统处于能量回收态时,随液压变压器配流盘控制角规律变化的优化参数.此外,根据蓄能器能量回收最大化的优化条件,得出车辆处于不同调节状态时优化节能控制算法.仿真分析得出:车辆处于不同优化工况条件下,液压变压器与蓄能器各个变化参数与优化节能算法的控制关系,该优化节能算法可用于液混车辆实现能量回收最大化.  相似文献   

10.
针对一种参数可变液压蓄能器样机(其充气压力、充气体积、工作介质阻尼系数及进油口结构参数能够根据液压系统工况变化实时调整),采用磁流变液作为其主要工作介质之一,通过磁流变液工作腔实时调整样机的阻尼系数,以满足不同液压系统动态特性的要求.重点研究磁流变液工作腔的结构及其外加电磁线圈磁路,在此基础上建立该部分数学模型,并将其与参数可变蓄能器样机整体数学模型结合进行理论分析,最后通过实验研究验证结构设计及理论分析的正确性.  相似文献   

11.
根据液压混合挖掘机动力系统的驱动结构、工作原理和负载特性,提出了其参数匹配方法.以蓄能器安装空间最小、蓄能器使用寿命最长和发动机工作点的稳定性为约束条件,从最大限度地发挥辅助驱动单元削峰填谷功能和降低系统装机功率的角度,对液压蓄能器的工作压力和体积、发动机功率、泵/马达的排量等参数的设计依据及其匹配进行分析,利用AMEsim软件建立仿真模型,以用于节能驱动系统中蓄能器的工作压力和额定体积的仿真.结果表明,进行参数匹配后,发动机的工作点切换满足稳定性的要求,且蓄能器的压力波动满足工况的要求.相对于原始驱动系统,其节能效果显著,节能比率为11.21%.
  相似文献   

12.
电子液压制动系统耗能特性影响因素分析   总被引:2,自引:1,他引:1  
针对车辆电子液压制动系统存在的能量消耗问题,建立了电子液压制动系统的能耗数学模型,在此模型的基础上分析系统参数和零部件结构参数对电子液压制动系统耗能特性的影响.结果表明减小系统最高工作压力和制动轮缸活塞直径有利于降低电子液压制动系统的耗电量,而系统最低工作压力和蓄能器有效排量的改变对电子液压制动系统的耗电量影响不大.增加蓄能器充气压力、减小蓄能器有效排量以及制动轮缸活塞直径有利于缩小蓄能器体积.   相似文献   

13.
针对当前重型车辆在缓速制动中存在的不足,设计了由液压泵/马达元件、蓄能器以及溢流阀等组成的液压辅助缓速制动装置。通过对车辆与制动装置的分析,制定了系统构型、液压原理图以及制动加速策略;应用AMESim软件搭建了车辆传动系统以及液压系统的模型;对不同档位下的制动效果进行了分析;并研究了在标准循环工况下机械制动与液压制动的分配;搭建了液压系统相关实验回路,对液压回路的转矩、流量、压力以及温度等参数进行了研究。得到了在不同车辆行驶状况下的制动效果,以及不同制动信号下的响应特性,证明该缓速制动系统在转矩可控性以及散热能力可以得到有效提升,并能长时间可靠运行。  相似文献   

14.
介绍了下运带式输送机液压制动器的制动原理、分析了其工作性能,重点讨论了液压制动器在制动、松闸和运行过程中油液压力的确定,比例控制过程及蓄能器在液压系统中的作用。  相似文献   

15.
本文介绍一种可不用动态流量计,而采用四个线性液阻组成的液压桥,由压力传感器测出桥路节点压力变化量,再经数学变换的方法得出蓄能器的阻抗频率特性。  相似文献   

16.
根据液压变压器控马达系统工作原理和系统动态方程,利用线性化理论,建立并简化了系统传递函数.理论分析表明,液压变压器控马达系统同时具有最小相位系统和非最小相位系统的性质.对于等配流槽液压变压器,当液压变压器控制角小于30°时,系统为最小相位系统;当液压变压器控制角大于30°时,系统为非最小相位系统.仿真结果表明,当液压变压器控制角大于30°时,系统的阶跃响应表现为负响应,系统具备非最小相位系统的特性.通过实验研究,进一步证明了理论分析和仿真分析的结果.研究表明,液压变压器控马达系统不适用于高精度转矩转速控制系统.   相似文献   

17.
工程车辆全动力液压制动系统充液特性分析   总被引:1,自引:0,他引:1  
在对新型蓄能器充液阀结构与性能分析的基础上,建立了全液压制动系统恒压及恒流充液过程数学模型,得到了影响充液速度及时间的系统参数及蓄能器与充液阀的结构参数,利用Simulink进行仿真,分析了节流口浮动时系统参数及充液阀结构参数对充液特性的影响规律,实验验证了仿真模型的正确性.  相似文献   

18.
本文建立了带有气囊式蓄能器的液压支柱的数学模型.并对这种液压支住的工作特性进行了分析。  相似文献   

19.
针对0.5T悬臂式电液锤击在使用中发现的问题,作者就其液压驱动系统进行了改进,使操作得以简化并获得多种打击方式。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号