首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
废旧锂离子电池中钴的酸浸出最佳条件探讨   总被引:1,自引:0,他引:1  
[摘要]钴作为废旧锂离子电池中高价值、重污染的金属成分,其回收非常重要.运用正交实验方法,以盐酸溶液为浸出液,分离回收废旧锂离子电池正极材料中的金属钴.实验设计冷凝回流装置,通过优化因素水平以使钴离子的浸出率达到最大化.研究结果表明,从电池中提取的黑色混合粉末(包括钴酸锂、乙炔黑)中浸出钴离子的最佳条件:盐酸质量浓度为4mol·L^-1,浸出温度为80℃,固液比(混合粉末的质量与盐酸体积之比)为5g·L^-1,浸出时间为2h.在此条件下,钴离子的浸出率达到99.6%.  相似文献   

2.
为了最大化浸出废锂电池中钴锂金属元素,固定浸出时间,采用全因子实验方法,以氨基磺酸浓度、过氧化氢质量分数、固液比、浸出温度为自变量,Co2+和Li+浸出率为因变量进行模型拟合,应用Minitab 17软件对工艺参数模型进行预测,并对最佳工艺参数进行验证。结果表明,主效应上,氨基磺酸浓度、过氧化氢质量分数、固液比、浸出温度对Co2+和Li+浸出率有显著的影响;交互效应上,氨基磺酸浓度+固液比、过氧化氢质量分数+浸出温度对Co2+浸出率有明显的影响,氨基磺酸浓度+浸出温度、过氧化氢质量分数+浸出温度、固液比+浸出温度对Li+浸出率有一定影响,其余效应影响不显著。所得最佳工艺参数为:c(NH2SO3H)=144 mol·L-1,w(H2O2)=10%,S/L=25 g·L-1,θ=55 ℃,t=70 min,在此浸出条件下,Co2+和Li+浸出率分别为9531%和9236%。  相似文献   

3.
采用柠檬酸-葡萄糖体系直接酸浸正极片来回收有价金属,探讨了柠檬酸浓度、葡萄糖用量、反应温度、反应时间和固液比对钴、锂浸出率的影响。结果表明,在柠檬酸浓度为1.5mol/L、葡萄糖与正极片质量比为1∶1、反应温度为100℃、浸出时间为3h和固液比为20g/L的条件下,钴、锂的整体浸出率达到98.0%。酸浸机理表明,钴离子和锂离子与柠檬酸阴离子的配位结合对提高钴、锂整体浸出率具有重要作用。沉淀原理表明,由于Li2CO3的溶度积常数较大,在有机酸体系中锂离子主要以配离子的形式存在而不会被碳酸根沉淀。  相似文献   

4.
以黑色鸭羽为原料,探讨了不同实验条件对鸭羽中黑色素与Co~(2+)之间的吸附与螯合情况.结果表明:黑色素对Co~(2+)的吸附和螯合量与实验温度、试液pH、反应时间、Co~(2+)浓度相关,同时所用表面活性剂类型及用量也具有显著影响.当温度为50℃、pH为5、反应时间为2 h、七水硫酸钴浓度为50 g/L、十二烷基硫酸酯钠浓度为5 g/L时,黑色素对Co~(2+)的吸附和螯合率最佳.  相似文献   

5.
低品位铜钴矿选择性浸出工艺研究   总被引:1,自引:0,他引:1  
随着铜钴矿物的不断开采,高品位、易处理铜钴矿资源的日益减少,低品位铜钴矿的开发利用越来越受到重视.低品位铜钴矿中有较多杂质金属离子,为了提高有价金属浸出率的同时抑制杂质金属离子的浸出,实验探讨温度、酸量、固液比、反应时间等因素对各金属离子浸出率的影响.最佳浸出工艺为:以盐酸为浸出液,盐酸总酸量为理论量的1倍,矿物粒度100目,固液比为S/L=1∶4,浸出时间为1 h,温度30℃.  相似文献   

6.
采用盐酸羟胺(HA)加快钴离子的循环,提高其催化活化过一硫酸盐(PMS)的效果,高效去除和矿化有机污染物.以罗丹明B(RhB)为模型污染物,考察了HA、Co~(2+)、PMS浓度及溶液初始pH值对均相Co~(2+)/PMS体系降解RhB的影响.同时,以乙二胺四乙酸(EDTA)为探针,测试了不同HA下体系中的Co~(3+)的含量.结果表明:RhB的降解遵循准一级动力学过程,其降解速率随着Co~(2+)和PMS浓度增加而线性增大.在投加2μmol·L~(-1) Co~(2+)和0.4 mmol·L~(-1) PMS下,HA浓度为0.4 mmol·L~(-1)时,20μmol·L~(-1 )RhB可在10 min被完全降解.其一级降解速率常数为0.35 min~(-1),是不加HA时(0.16 min~(-1),Co~(2+)/PMS体系)降解速率常数的2.2倍. HA的加入将TOC去除率由17.8%提高到了38.6%.HA的加入还有效促进了Co~(3+)向Co~(2+)的还原循环,增加了活性Co~(2+)的含量,增强了其活化PMS产生自由基的能力.该HA增强Co~(2+)/PMS体系也可有效降解其它有机染料(如亚甲基蓝、甲基紫、橙黄II).说明盐酸羟胺的加入增强了Co~(2+)催化活化PMS降解有机染料.  相似文献   

7.
研究从废旧锂离子电池中回收钴并制备棒状草酸钴粉末的工艺。研究结果表明:该工艺采用H2SO4+Na2S2O3为浸出剂对正极材料浸出,在最优条件即液固比为10:1,H2SO4浓度为2.0 mol/L,Na2S2O3浓度为0.15 mol/L,温度为85℃,浸出时间为120 min时,钴的浸出率达96.5%。浸出液中加入碳酸氢铵调节pH至5.0以除出浸出液中的铝和铜,不经过滤操作直接使用次氯酸钠氧化沉淀铁和锰离子,过滤后滤液中仅含铁0.006 g/L,锰0.004 g/L,而钴的损失率仅为1.2%。滤液使用P507萃取分离钴和镍、锂,在相比为1.5:1.0,平衡pH为4.5,P507的体积分数为25%的条件下,经二级逆流萃取后钴的萃取率为99.4%。使用180 g/L的硫酸为反萃剂,相比为4~5时,钴的回收率达99.9%。反萃液使用草酸铵沉钴,沉钴的最优条件为50℃,终点pH为1.5,C2O42与Co2+摩尔比n(C2O42):n(Co2+)=1.15:1。经SEM分析,沉淀而得的钴产品为形貌良好的棒状草酸钴。整个流程方法简便,废旧锂离子电池中钴回收率达到95%,草酸钴中钴含量达31.1%,符合工业要求。  相似文献   

8.
本文以钛酸丁酯和乙酸锂为钛源和锂源,采用溶胶-凝胶法制备了钛酸锂(Li_2TiO_3)纳米粒子,用盐酸对其进行处理得到偏钛酸型锂离子吸附剂(钛锂离子筛).配制了盐湖卤水模拟液,在吸附之前向模拟液中加入氢氧化钠除去Mg~(2+)和Ca~(2+),并用所制备的吸附剂进行了模拟从盐湖卤水中吸附锂离子的研究.结果表明偏钛酸型锂离子吸附剂对锂离子的吸附容量为8.25mg·g~(-1),Li~+的分配系数(Kd)为24.54 mL·g~(-1),其数值远大于Na~+(0.52 mL·g~(-1))和K+(0.97mL·g~(-1))的分配系数.Li~+对Na~+的分离因素(αLiNa)为47.2,Li~+对K~+的分离因素(αLiK)为25.3,表明所制备的吸附剂对Li~+具有很好的选择吸附性.  相似文献   

9.
为回收废旧锂离子电池中的有价值金属,采用硫酸—甘蔗渣体系进行酸浸,将钴从废旧锂离子电池电极材料中浸出,并探讨了甘蔗渣对钴浸出效果的影响及反应机理。研究表明:甘蔗渣作为还原剂参与浸出反应,甘蔗渣中的醛基以及反应后的中间产物RCOO.H_2,都可与Co~(3+)反应,将其还原成Co~(2+),替代了价格昂贵且利用率低的H_2O_2,提高了钴的浸出率。钴的浸出反应符合有收缩的未反应核模型,反应前期,表观活化能为22.98 k J/mol;反应后期,表观活化能为38.31 k J/mol。在浸出温度90℃,浸出时间1 h,硫酸浓度2 mol/L,液固比150∶1,甘蔗渣粒径0.3 mm,甘蔗渣添加量0.5 g的最优条件下,钴的浸出率达95.38%。  相似文献   

10.
研究锂电池浸出液中钴、镍、锂的P507萃取分离方法,通过直接采用草酸反萃富钴有机相得到草酸钴产品.实验对含有53.8 g/L 钴的料液进行萃取.研究结果表明最佳萃取条件如下:有机相组成(体积分数)为25%P507+5%TBP+70%磺化煤油,萃取剂皂化率为70%,水相初始pH为3.5,常温下萃取10 min,有机相与水相的相比ψ(O)/ψ(A)为1.5:1.0,通过3级错流萃取,钴的萃取率达99.5%,锂和镍的萃取率仅为4.9%和3.1%:P507萃取分离钴、镍、锂过程的焓变分别为: -2.043,-0.812和1.586 kJ/mol;直接使用草酸反萃富钴有机相,得到分相良好的油一水一固3相,最优反萃工艺为:0.03 g草酸/mL富钴萃取剂,温度为40℃,ψ(O)/ψ(A)=1.0:2.5,钴的反萃率达99.5%,反萃后的萃取剂和水相均可再生循环利用.  相似文献   

11.
主要探讨了常压下盐酸对蛇纹石型红土镍矿进行浸出的工艺条件。考察了酸矿比、液固比、反应温度、反应时间等对蛇纹石型红土镍矿浸出的影响。通过实验得出最佳工艺条件:酸矿比为2.5∶1、液固比为5∶1、反应时间为0.5 h、反应温度为100℃。在此条件下镍、钴、铁浸出率分别为100%、100%和90%。  相似文献   

12.
针对废旧三元正极粉,选用氢气和碳作为共还原剂,通过调控还原产物组成,达到高效优先提锂的效果,研究氢和碳在正极粉还原过程中的协同提锂机制。研究结果表明:在气体流量0.3 L/min、碳含量1.88%、焙烧温度600℃、焙烧时间1 h的最优条件下,废旧三元正极粉被还原为Ni、Co、MnO和LiOH,碳含量和焙烧温度参数的调控对正极粉的还原以及锂物相的转变至关重要。在反应温度为25℃、液固比为5:1(mL/g)、反应时间为20 min的条件下,锂的浸出率达到93.4%,而其他金属均留在渣相中。基于不同锂盐溶解度的不同,采用碳化沉淀的方法处理提锂液,得到了纯度为99.7%的Li2CO3产品。  相似文献   

13.
研究NH3-(NH4)2SO4体系pH、总氨浓度、液固比、温度、矿物粒径、搅拌速度等因素对兰坪低品位氧化锌矿中锌及主要杂质元素浸出行为的影响,并在较低pH和总氨浓度条件下,采用二段逆流浸出工艺对该矿进行处理。实验结果表明:pH、总氨浓度、液固比是影响锌及杂质浸出的主要因素,浸出液中硅、铁、镉、铅等杂质离子的含量都较低。在浸出剂总氨浓度为3 mol/L,pH为9.60,液固比为4,反应时间为4 h的条件下,通过二段逆流浸出工艺处理,锌的浸出率>90%,浸出液pH<9.0,能很好地满足萃取工序的处理要求。  相似文献   

14.
采用固相合成法,以Li_2CO_3和Nb_2O_5为原料制得锂铌氧化物LiNbO_3,经硝酸酸洗后得到锂离子筛HNbO_3.并讨论了酸物质的量对LiNbO_3中锂、铌溶出率的影响,研究了HNbO_3的饱和吸附量和吸附特性.结果表明:LiNbO_3经酸洗后,铌的溶损率很小,可忽略不计,而锂的洗脱率为83%,;HNbO_3在含Li~+的混合模拟液中对Li~+的饱和吸附量约为16,mg/g,达到理论值(17.3,mg/g)的92.5%,;吸附过程符合拟二级动力学方程和Langmuir等温吸附方程,这表明HNbO_3对Li~+的吸附属于单分子层吸附,且以化学吸附为主.  相似文献   

15.
采用响应曲面法(Response Surface Methodology,RSM),选取Quadratic模型,进行了Box-Behnken实验设计优化在NH_3-(NH_4)_2SO_4-H_2O体系浸出氧化锌矿的实验工艺参数,建立了回归方程.回归分析模型的"ProbF"值为0.0023,小于0.05,模型模拟精度高,回归方程的全体自变量与因变量之间是显著的,回归方程可信.模型分析发现,液固比、浸出温度、浸出时间三个因素对锌的浸出率影响较为显著,对响应面和等高线图进行分析,液固比和浸出时间的交互作用较为显著.RSM法优化最佳浸出实验参数液固比12.81、浸出温度30℃、浸出时间4.15h、总氨浓度7.5mol·L~(-1),预测浸出率86.2%.综合考虑操作的可行性,在采用NH_3-(NH_4)_2SO_4-H_2O体系浸出氧化锌矿工艺中,选取液固比13、浸出温度30℃、浸出时间4h、总氨浓度7.5mol·L~(-1),测得浸出率为86.0%,与理论预测值相比误差为0.23%.  相似文献   

16.
废催化剂焙烧水浸渣中硫酸浸取钴的动力学研究   总被引:1,自引:1,他引:0  
以废催化剂处理过程中得到的镍钴渣为研究对象,采用硫酸浸出镍钴渣,使钴和镍得到有效回收,并对硫酸浸出钴的动力学进行探讨。研究结果表明:搅拌速度为400~1200r/min时对钴浸出率的影响非常小,物料粒度、硫酸浓度和反应温度等因素对钴浸出率则有较大影响;当反应温度为80℃,反应时间为180min,原料粒度为(0.074~0.100)mm,H2SO4浓度为6mol/L,搅拌速度为800r/min,固液比为1:10时,钴的浸出率为94.2%,镍的浸出率则为93.5%;硫酸浸出镍钴渣的反应受产物层内扩散控制,表观活化能为16.34kJ/mol。  相似文献   

17.
针对FCC废催化剂中所含的稀土元素,本研究以废FCC催化剂为原料,与无水碳酸钠混合焙烧活化,以盐酸为浸出剂,探究了盐酸浓度、浸出温度、浸出时间、浸出固液比以及焙烧时间等因素对FCC废催化剂中稀土元素镧(La)、铈(Ce)的浸出率的影响,并进行了浸出过程动力学分析和表观活化能计算。实验结果表明:废FCC催化剂在750℃条件下和碳酸钠以质量比为1:1混合焙烧300 min后,在70℃的条件下,用6 mol/L的盐酸溶液且固液比为1:25浸出120 min时,La、Ce最佳浸出率可达到88.06%、90.07%;FCC废催化剂浸出前后SEM和XRD测试分析表明废FCC在酸浸后衍射特征峰基本消失,晶格结构被破坏,浸出渣主要为SiO2;缩芯模型浸出过程动力学分析和Avrami表观活化能计算结果均表明:La和Ce的浸出活化能的测定值分别为27.1、21.2 KJ/mol,该浸出过程受扩散控制。该研究对固废资源中稀土元素的高效回收具有一定的指导意义。  相似文献   

18.
介绍了以遵义钛业的废盐酸为原料浸出菱锰矿的工艺,考查了各种因素对锰浸出率的影响.实验结果表明在浸出时间60min,浸出温度80℃,液固比2.5:1,酸过量系数1.3的最佳工艺条件下,锰的浸出率可达90.14%,浸出液经过除杂结晶后,产品可以达到现行的工业级四水氯化锰的行业标准.  相似文献   

19.
废旧NCM523型锂离子电池正极材料中含有价金属元素Ni和Co等,必须对其进行回收.用H2 SO4和H2 O2浸出正极活性物质中的Ni和Co,再用KMnO4除去浸出液中的Mn,最后用"水热煅烧法"制NiCoO2材料.分析了各因素对金属浸出率的影响,在H2 SO4浓度2.5 mol/L、H2 O2体积分数10%、浸出温度80℃、浸出时间80 min和固液比1:14 g/mL的条件下,Ni、Co、Mn的浸出率分别为94.03%、99.56%、14.97%,通过Ni、Co的选择性浸出实现Ni、Co与Mn的初步分离;以KMnO4作为氧化剂,浸出液中Mn离子的浓度可降至0.45 mmol/L以下;以聚乙二醇2000作表面活性剂,草酸作沉淀剂,在160℃水热合成、400℃煅烧后可从浸出净化液中制备出形貌均匀的链状NiCoO2材料.初步实现了废旧电池正极材料中有价金属Ni和Co的回收利用.  相似文献   

20.
利用原位水解和熔融扩散技术制备钛酸锂/硫(LTO/S)复合材料,并以该复合材料为正极、金属锂为负极,结合PEO基聚合物固体电解质组装全固态锂电池。研究结果表明,电池充放电过程中钛酸锂和硫作为正极活性物质均提供了高容量,电池循环稳定性也得到了显著提高;当复合正极中钛酸锂与硫质量比为1:3、活性物质质量分数为80%时,电池的容量发挥和循环稳定性同时达到最佳;在60℃和0.2C测试条件下,循环100圈后电池比容量保持在801 mA·h/g,库仑效率达到99%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号