首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
通过在氧化石墨烯(GO)表面原位聚合吡咯(Py)制备了聚吡咯(PPy)/GO复合物(PGO);以PGO为前驱体,经水热过程后,用KOH作为活化剂得到了三维氮掺杂多孔炭/石墨烯(NPCG)网络结构,采用XPS、SEM和N2吸/脱附等手段对其形貌和结构进行了表征;系统地研究了GO与Py的质量比和活化温度对合成的NPCG电化学性能的影响。结果表明:当GO与Py和PGO与KOH的质量比分别为1/15和1/3时,650℃活化温度下合成的NPCG具有优异的电化学性能,当电流密度为1 A/g时,其比容量高达398 F/g;在电流密度为10 A/g条件下,经1000次充放电循环后,其比容量保持率为94%。  相似文献   

2.
以改进的Hummer法制备氧化石墨(GO),用原位聚合法合成聚吡咯/氧化石墨(Ppy/GO)复合物,运用CV和CP法测试电化学性能,并以XRD,FTIR,SEM分析材料的结构形貌.结果表明:(1)Ppy/GO复合物具有较好的电化学电容性能.当电流密度为0.5A.g-1时,复合物在1mol.L-1 H2SO4溶液中的比电容可达358.93F.g-1.(2)Ppy/GO复合物较Ppy有更好的循环稳定性和倍率充放电性能.当扫描速率分别为10,20,50mV.s-1时,复合物电极的循环伏安曲线均呈现出良好的矩形特征,并能保持一致性,而在相同扫描速率下,Ppy的循环伏安曲线不稳定;当电流密度分别为1,2,5A.g-1时,复合物的比电容分别达204.71,130.82,60.21F.g-1,高于相同条件下Ppy的178.05,123.89,46.52F.g-1.以上说明将聚吡咯与氧化石墨形成复合物有利于改善聚吡咯的电化学电容性能.  相似文献   

3.
以聚吡咯(PPy)纳米球为前驱体,经1 000℃高温炭化后,采用KOH在750℃进行活化制备多孔碳纳米球(PCS),并利用对巯基苯胺(PATP)与PCS进行溶剂热反应对PCS进行功能化处理,制备了高密度的功能化多孔碳纳米球(PATP-PCS).结果表明,经过PATP功能化之后,低密度的多孔炭材料转变为高密度的功能化炭材料.PATP-PCS的体积电容在0.5 A/g时可达183.63F/cm~3;当电流密度增大到20 A/g时,体积电容仍有123.14F/cm~3,显示出优异的倍率性能;在电流密度为10A/g的条件下,经过3 000次恒流充放电循环后,其循环寿命高达94.7%,表明了突出的循环稳定性.  相似文献   

4.
采用恒电流法在聚吡咯(PPy)和聚苯胺(Pani)的相应单体溶液中制备了PPy和Pani的复合型导电高分子膜电极. 根据循环伏安曲线、充放电曲线和电化学阻抗谱,研究了超级电容器的电容性能. 结果表明, 聚合顺序对复合型导电高分子膜电极的电容性能有很大影响, 以PPy为底层的复合型电极的电容性能远高于其他复合型电极或单层膜电极. 不锈钢/PPy/Pani和不锈钢/PPy/Pani/PPy电极的比电容分别高达196.08 F/g和212.53 F/g.  相似文献   

5.
利用水热法合成了纳米棒状的MnO_2/碳纳米球(CNPs)作为电化学超级电容器的电极材料.利用场发射扫描电镜(FESEM)、X射线衍射光谱分析(XRD)对样品的微观形貌、物相进行分析;利用循环伏安法和恒电流充放电测试材料的电化学性能.结果表明:纳米棒状MnO_2/CNPs复合材料具有良好的电化学性能.在0.1 A/g的电流密度,1 mol/L Na_2SO_4电解液中,电极材料的比电容高达305.6 F/g,远高于纯碳球的比电容(49.3 F/g),当电流密度增至5 A/g时,材料的比电容为235 F/g,比电容仍能保持76.9%.  相似文献   

6.
采用水热法和电化学沉积法在泡沫镍上制备了CoO@ Ni-Co-S电极材料,并对其进行了SEM、XRD、XPS表征和电化学性能测试.结果表明:本材料具有较高的电化学性能,在电流密度为1 A/g时,比电容为1 352 F/g;电流密度为10 A/g时,比电容仍能达到1 055 F/g;进一步通过稳定性测试研究发现,在电流密度为2 A/g下充放电2 000次,电容保留率为87%.以CoO@ Ni-Co-S复合材料作为正极,活性炭作为负极构筑非对称型超级电容器,该装置在电流密度为1 A/g时,比电容为209 F/g,操作电压窗口为1. 7 V,功率密度为2. 99 k W/kg时,能量密度可达39. 7 Wh/kg.  相似文献   

7.
采用化学氧化法合成一种粉末状超级电容器电极用导电高分子材料聚吡咯,通过引入掺杂剂TSA,使合成的PPy的电导率得到有效的提高,电化学电容性能得到改善;研究掺杂剂浓度、单体浓度、氧化剂浓度、聚合时间及反应温度对Py转化率和PPy电导率、比电容等性能的影响.结果表明,TSA用量对Py转化率和PPy的电导率的影响不大,但对PPy比电容的贡献比较明显;PPy的产量随Py用量增加逐步增加,转化率却呈下降趋势,PPy的电导率和比电容随Py用量增加先增加而后下降;Py的转化率随FeCl3浓度增加而规则地升高,PPy的电导率和比电容先基本保持不变,之后反而降低;随着tp的增加,Py的转化率、电导率和比电容有显著的增加;在低温下有利于提高PPy的电导率.  相似文献   

8.
以全棉机织布和全棉水刺非织布作为柔性基材,通过化学氧化法制备超级电容器用聚吡咯/棉织物复合电极材料.研究电极材料样品的电学性能,测试结果表明,电极材料样品具有良好的电学性能,在0.1 A/g电流密度下,聚吡咯/棉机织布和聚吡咯/棉非织布电极材料样品的比容量分别为346 F/g和282 F/g.以两种电极材料样品分别与PVAH_3PO_4凝胶电解质组装柔性固态超级电容器,进行电化学性能测试,在电流密度为1 mA cm~(-2)时,基于聚吡咯/棉机织布和聚吡咯/棉非织布电极材料组装的固态超级电容器容量为0.64 F/cm~2(152.2 F/g)和0.44 F/cm~2(115.7 F/g).  相似文献   

9.
以小分子2-蒽-9-基亚甲基一丙二腈(AYM)自组装的纳/微米线为模板,气液相聚合制备出聚吡咯(PPy)与AYM复合材料(PPy/AYM),经CH_2Cl_2溶剂脱除AYM后制得管状PPy.红外分析(IR-ATR)显示复合材料主要表现出PPy的特征峰.扫描电镜(sEM)和透射电镜(TEM)显示当吡咯(Py)单体与AYM两者之间用量摩尔比维持合理水平时,可以获得长度几十甚至上百个微米,直径1μm左右甚至更小的管状PPy.热失重(TGA)显示所得PPy纳/微米管与本体PPy具有相似的热失重行为,但电导率低一个数量级.脱除AYM的CH_2Cl_2溶液在减压蒸馏后仍旧可以得到AYM,回收率为93%,可重复使用.  相似文献   

10.
聚苯胺纳米纤维(PANI-F)与氧化石墨烯(GO)经组装后,进行水热反应,制备了PANI-F/rGO(还原的氧化石墨烯)复合材料.利用扫描电子显微镜(SEM),傅立叶红外光谱仪(FT-IR),X射线粉末衍射仪(XRD)对样品形貌和结构进行表征;同时,借助循环伏安(CV),恒电流充放电(GCD),交流阻抗(EIS)对样品的电化学性能进行了测试.结果表明:rGO均匀包裹在PANI-F表面,在1M H2SO4的电解液中,当电流密度为1A/g时,PANI-F比电容为378F/g,而PAGO10(PANI与GO的质量比为10∶1),比电容达517F/g;且当电流密度10 A/g时,PAGO10的比电容为356 F/g,而PANI-F的比电容仅为107F/g.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号