首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
本文尝试了用结晶三氯化铁作为催化剂用正并交实验法优化设计合成乙酸异丙酯。实验表明结晶三氯化铁催化反应时间短,实验最终确定了最优反应条件为:催化剂用量为4.5g/0.4mol乙酸,回流分水时间为90min,酸醇摩尔比为1:1.5,反应温度为回流分水温度。在最佳条件下,反应的收率可以达到84.2%。  相似文献   

2.
微波辐射下固体酸催化合成异烟酸乙酯   总被引:2,自引:1,他引:1  
在微波辐射下,以异烟酸和乙醇为原料,以活性炭固载对甲苯磺酸作催化剂,合成了异烟酸乙酯.最佳工艺条件:醇酸物质的量比为8∶ 1,催化剂用量为 1.0 g,微波辐射时间为 10 min,微波辐射功率为 200 W,酯化产率达 97.18%.另外通过实验发现,微波辐射下,反应速率及产率都明显高于常规加热方式.  相似文献   

3.
以氯甲酸乙酯和硫氰酸钠为原料,席夫碱为催化剂,采用相转移催化法合成异硫氰酸乙氧羰酯.研究了催化剂用量、反应温度、反应时间和原料配比等对产品收率的影响.结果表明:适当提高反应温度和延长反应时间有利于反应收率的提高;通过试验确定了该合成反应的适宜条件为:反应温度35℃,反应时间3h,硫氰酸钠、氯甲酸乙酯和席夫碱催化剂的摩尔...  相似文献   

4.
以Cu/ZSM_5为催化剂,在新型微波催化反应器上进行了微波协同催化分解NO反应.初步探讨了微波协同催化分解NO反应的宏观动力学,并与常规加热条件下催化分解NO反应的宏观动力进行了对比.计算结果表明:在微波辐射条件下,该反应的活化能为14.6 kJ/mol.而常规加热条件下,该反应的活化能为75.6 kJ/mol.微波辐射条件下该反应活化能仅仅是常规加热条件下该反应活化能的1/5.177.这说明微波作用不仅具有致热效应,而且大大降低了反应活化能,具有微波催化效应.  相似文献   

5.
微波催化剂协同作用合成乳酸乙酯   总被引:1,自引:0,他引:1  
采用微波辐射技术,在无水CaCl2催化下,乳酸与乙醇常压下直接合成乳酸乙酯。讨论了微波辐射功率、辐射时间、催化剂用量、带水剂的量及反应摩尔比等因素对酯产率的影响。最佳酯化条件为:醇酸摩尔比为2∶1,催化剂用量为乳酸用量的2.0%,带水剂15 mL,微波功率450 W,辐射时间45 min,乳酸乙酯产率可达89.2%。  相似文献   

6.
微波辐射氯化铁催化合成草酸二乙酯的研究   总被引:1,自引:1,他引:0  
以氯化铁为催化剂,以草酸和乙醇为原料在微波辐射下直接酯化合成草酸二乙酯的方法.通过实验得出最佳反应条件为:醇酸摩尔比为4,催化剂用量为总投料量的6%,微波辐射功率为400W,辐射时间12min.在此条件下取得了较好的收率.  相似文献   

7.
微波辐射氯化铁催化合成乙酸乙酯   总被引:1,自引:0,他引:1  
在微波辐射下以六水合氯化铁为催化剂合成了乙酸乙酯.探讨了酸醇物质的量比、氯化铁用量、微波辐射时间和微波功率对酯化率的影响.结果表明最佳反应条件为:酸醇物质的量比3∶1,氯化铁用量为酸醇总质量的4.0%~5.5%(1.2 g),微波功率280 W,微波辐射时间8 min.反应酯化率可达89.2%.  相似文献   

8.
微波催化合成环己基三氯硅烷的研究   总被引:1,自引:0,他引:1  
以环己烯和三氯氢硅为原料,氯铂酸为催化剂,经微波催化硅氢加成反应合成了环己基三氯硅烷.研究了催化剂用量、微波诱导和微波加热对反应的影响,确立了最佳的合成条件:用二甲苯作溶剂,催化剂用量取初始反应体系中浓度120 mg.L-1,微波加热功率为100 W,加热时间为1 h,三氯氢硅的转化率为68%,选择性为98.9%.  相似文献   

9.
本文以r—丁内酯为原料与氯化亚矾和异丙醇反应生成r—氯代丁酸异丙酯,经固/液相转移催化(PTC)环合成环丙烷甲酸异丙酯,在液/液PTC条件下进一步水解成环丙烷甲酸,总收率为72.7%。  相似文献   

10.
本文通过固/液相转移催化(’TC)法,由r一氯代丁酸异丙酯合成了环丙烷铰 酸异丙酯,讨论了各种因素对产率的影响,在最佳反应条件下环丙烷竣酸异丙酯的产率达 92%。  相似文献   

11.
微波诱导催化交换氟化合成对氟硝基苯   总被引:5,自引:0,他引:5  
该文研究了微波辐射和常规加热下卤素交换氟化合成对氟硝基苯的方法,提出了共沸干燥和微波干燥制备无水KF的方法。结果表明,于微波辐射下,用微波干燥KF为氟化剂,在十六烷基三甲基溴化铵存在下于DMSO中反应2.5h可得90.2%的产率,反应速率是常规加热的2.4倍,产率由86.8%提高到90.2%,以喷雾干燥KF为氟化剂,则产率可达92.2%。  相似文献   

12.
氯乙酸酯的微波绿色合成   总被引:5,自引:0,他引:5  
在微波辐射功率为250 W反应10 min的条件下,氯乙酸分别与甲醇、乙醇、丙醇、异丙醇、叔丁醇在NaHSO4.H2O催化下顺利发生酯化反应,以76%~91%产率得到了相应的氯乙酸酯化合物,该方法具有操作简单,催化剂可重复使用,反应时间短,对环境友好等优点.产物结构经1H-NMR和元素分析确认.  相似文献   

13.
微波辐射条件下,以丙酮作用溶剂,1-[二-(4-氟苯)甲基]哌嗪与氯乙酸乙酯反应得到2-[二-(4-氟苯)甲基]哌嗪乙酸乙酯(1),(1)与水合肼在微波辐射条件下反应得到2-[二-(4-氟苯)甲基]哌嗪乙酰肼(2),进一步在微波辐射条件下由2-[二-(4-氟苯)甲基]哌嗪乙酰肼(2)与取代芳香醛和酮反应制得目标化合物3(a-d).合成的4个目标化合物通过熔点测定和质谱、红外光谱、核磁共振氢谱分析、元素分析对其结构进行确证.  相似文献   

14.
微波辐射固相合成外消旋1,1′-联-2-萘酚的改进   总被引:6,自引:0,他引:6  
利用微波辐射 ,以FeCl3 ·6H2 O为催化剂 ,使 2 -萘酚进行氧化偶联反应 ,合成外消旋 1,1′ -联- 2 -萘酚 ,反应时间 2min ,产品产率 98.5 % ,m .p .2 15~ 2 16℃ .  相似文献   

15.
微波相转移催化合成对氟硝基苯   总被引:3,自引:0,他引:3  
在微波辐射下,用Halex法合成了对氟硝基苯,考察了影响反应的主要因素,寻找出较佳的工艺条件为对氯硝基苯10mmol,氟化钾15mmol,以四甲基氯化铵为催化剂,用量为1mmol,以二甲基亚砜为溶剂,用量为5mL,微波功率对应于所用商品微波炉“高火”档,辐射时间为30min,气相色谱分析收率为86.9%,微波法的反应速度是常规加热法反应速率的20倍。在该条件下进行了放大的重复试验,重复性好。  相似文献   

16.
分别用常规加热法和微波辐射法合成了乙酰苯胺.结果表明:常规加热法合成的最佳时间为45min,微波辐射法为4min,反应时间比常规加热法缩短了约11倍.微波辐射法的转化率比实验教材给定反应30min的转化率提高了约30%.与学生用常规加热法所得的实验数据比较,微波辐射法得到的收率高,产物纯度高.因此,微波辐射法具有反应速度快、转化率高、产物纯度高等优点.用微波辐射法合成乙酰苯胺既能很好地解决目前学生实验学时紧张的教学问题,又能达到很好的实验效果.  相似文献   

17.
微波辐射下莰烯与乙醇的加成反应   总被引:2,自引:1,他引:1  
研究了在微波辐射下茨烯与乙醇加成生成异菠基乙醚的反应。莰烯、乙醇、对甲苯磺酸的混合物在微波辐射下反应30min,可使反应液中异菠基乙醚的质量分数达76.35%,反应速率比加热回流条件下的反应提高了十几倍。  相似文献   

18.
利用颗粒状活性炭固栽对甲苯磺酸作催化剂,在微波辐射下,快速合成乳酸正丁酯。实验结果显示。当微波 功率为300w,催化剂用量为0.8 g,醇酸物质的量的经为3:1,反应时间仅为30min时,酯化率可达97.0%以上。另 外,通过实验发现,微波辐射下,反应速率明显高于常规加热方式。  相似文献   

19.
本文主要研究热敏材料聚N-异丙基丙烯酰胺 (PNIPAAm) 的结构对其溶胀性能影响。分别采用水热法和微波辐射法合成PNIPAAm热敏水凝胶,应用扫描电镜观察了两种合成方法制得的水凝胶的表面结构,测定了水凝胶随温度变化的溶胀率曲线及其溶胀和退溶胀动力学,并讨论了水凝胶的结构对其溶胀率的影响。结果表明:与水浴法制备的水凝胶相比,微波辐射法所得到的水凝胶无论是在干燥状态下还是溶胀状态下都具有更为丰富发达且较大的孔隙结构,在溶胀过程中,微波辐射法合成的水凝胶在临界溶解温度(LCST)以下具更高的溶胀率,而在LCST以上时,能更多地释放水而具有更低的溶胀率。此外,微波辐射所合成的水凝胶由于具有较为发达的孔隙结构,使其比水浴法制备的水凝胶具有更快的溶胀速度和退溶胀速度。  相似文献   

20.
借助微波辅助手段,以天冬氨酸(A)为原料,在均三甲苯和环丁砜混合溶剂中,以磷酸(体积分数为85%)为催化剂进行聚合反应。考察了催化剂用量、微波功率、反应温度和反应时间等因素对聚琥珀酰亚胺(PSI)的产率以及分子量的影响;进一步对PSI进行水解反应,并用红外光谱对水解产物进行结构表征。结果表明:借助微波辅助加热手段,使得聚合反应时间大大缩短,由传统热缩合反应的3~5h缩短为20min左右,反应效率明显提高;随催化剂用量的增加,PSI的产率增加,分子量降低,但过多的催化剂存在会导致产率下降;微波功率增大,PSI产率与分子量均呈下降趋势;在微波作用下,聚合反应温度(170~200℃)明显低于传统热缩合聚合的温度,并随着温度的升高和反应时间的延长,PSI的产率和聚天冬氨酸(PASP)分子量均呈现明显增加。在合适的条件下,可制备出数均分子量为6000~20000,分子量分布为1.3~2.4的PASP产物。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号