首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 218 毫秒
1.
利用INSTRON拉伸试验机和Zwick/Roell HTM5020型高速拉伸试验机对Q420钢材开展了不同应变率下(0.001~288s-1)的单轴拉伸试验,研究应变率效应对钢材力学性能的影响.试验结果表明,Q420钢为应变率敏感型材料,其硬化特征随应变率的提高而变化.采用ANSYS中LSDYNA模块对静力和动力拉伸试验进行仿真模拟,通过逆向反推的方式获得了Q420钢颈缩后的真实应力应变曲线.仿真结果显示,Q420钢材的真实应力应变关系随着应变率的提高,从幂次型的Ludwik准则向指数型的Voce准则转化.为得到更优的动本构模型,在H/V-R本构模型中引入新的应变率准则,以Cowper-Symonds模型中的钢材动力放大系数代替H/V-R本构模型中的线性Wagoner应变率准则.结果显示,修正H/V-R本构模型很好地吻合了试验数据,准确反映了大应变状态下的应变硬化特征和应变率对应变硬化的影响.  相似文献   

2.
钢材应变硬化与应变率效应的试验   总被引:1,自引:0,他引:1  
利用INSTRON拉伸试验机和Zwick/Roell HTM5020型高速拉伸试验机对Q420钢材开展了不同应变率下(0.001-288s-1)的单轴拉伸试验,研究应变率效应对钢材力学性能的影响。试验结果表明,Q420钢为应变率敏感型材料,其硬化特征随应变率的提高而变化。采用ANSYS中LS-DYNA模块对静力和动力拉伸试验进行仿真模拟,通过逆向反推的方式获得了Q420钢颈缩后的真实应力应变曲线。仿真结果显示,Q420钢材的真实应力应变关系随着应变率的提高,从幂次型的Ludwik准则向指数型的Voce准则转化。为得到更优的动本构模型,在H/V-R本构模型中引入新的应变率准则,以Cowper-Symonds模型中的钢材动力放大系数代替H/V-R本构模型中的线性Wagoner应变率准则。结果显示,修正H/V-R本构模型很好地吻合了试验数据,准确反映了大应变状态下的应变硬化特征和应变率对应变硬化的影响。  相似文献   

3.
不同应变率下Q345钢材力学性能试验研究   总被引:1,自引:0,他引:1  
利用INSTRON拉伸试验机和Zwick/Roell HTM5020型高速拉伸试验机对Q345钢材进行准静态和高速拉伸试验.采用ANSYS中的LS-DYNA模块对不同加载速率下的拉伸试验进行仿真模拟,通过试验与仿真相结合的方式获得了钢材的真实应力应变曲线.仿真结果显示,Q345钢的真实应力应变关系在低应变率和高应变率下可分别近似用Ludwik模型和Voce模型描述.通过采用Hollomon准则和Voce准则的线性组合模型(H/V-R模型)对试验数据进行拟合,验证了H/V-R模型能比较准确地反映Q345钢的应变率效应,但和试验数据仍稍有偏差.为得到更优的经验型本构模型,将Wagoner的应变率准则引入H/V-R本构模型,进一步优化得到了可准确反映Q345应变率效应的H/V-R2经验型本构模型.  相似文献   

4.
多晶纯钛中应变率拉伸力学行为实验研究   总被引:1,自引:0,他引:1  
利用MTS809和自行研制的中应变率材料试验机,在室温下对多晶纯钛进行了0.004~14 s-1的准静态至中应变率范围内的拉伸试验,得到了多晶纯钛的拉伸应力应变关系.试验结果表明,多晶纯钛的拉伸力学行为在准静态至中应变率范围内具有明显的应变率强化效应和应变硬化效应,且有随应变率增大而逐渐明显的绝热温升软化效应.金相观察显示,拉伸变形过程中伴随孪生机制且孪晶密度随加载应变率的升高而增大.基于Johnson-Cook模型,提出了通过引入综合绝热温升软化系数Ψ来计及与应变率相关的绝热温升软化效应的修正的热粘塑性本构模型.结果表明,该模型能较好地表征多晶纯钛在本试验应变率范围内的拉伸力学行为.  相似文献   

5.
为研究水陆两栖飞机用航空铝合金材料在中低应变率区间内的动态力学性能,在常温下针对飞机船底壁板结构用7475-T761和7055-T76511铝合金采用电子式万能材料试验机开展准静态及低应变率拉伸实验,采用高速液压伺服试验机开展中应变率动态拉伸实验,获得了0.005~500 s-1区间内的铝合金应力-应变曲线,拟合和验证了Johnson-Cook本构模型。结果表明:在应变率0.005~500 s-1区间内,7475-T761和7055-T76511铝合金均呈现出了显著的应变率强化效应;从准静态向中应变率增加,7475-T761铝合金的失效应变随着增大,而7055-T76511铝合金先降低后增加;7475-T761铝合金表现出了显著的应变硬化效应,而7055-T76511铝合金应变硬化效应相对较弱;两种铝合金的断口形貌均未表现出明显的颈缩现象;拟合得到的Johnson-Cook本构模型能够较好表征两种铝合金材料的动态力学性能,最大均方根误差为13.7 MPa。  相似文献   

6.
Q235B和Q345B钢材在中国建筑领域应用广泛,但却缺乏该类钢材的微孔扩张模型(VGM)和应力修正临界应变(SMCS)模型等微观损伤模型韧性参数,且关于断裂方面的研究缺乏监测到钢材断裂时刻的应力与应变,而无法正确对韧性参数进行校正.笔者取材自母材、热影响区、焊缝区的3种Q235B和Q345B钢材,加工了36个缺口圆棒试件,通过系列单轴拉伸实验,获得了Q235B和Q345B钢材的VGM和SMCS模型韧性参数,然后利用有限元计算VGM模型和SMCS模型对Q235B和Q345B钢材韧性断裂的预测效果.结果表明:VGM模型和SMCS模型对Q235B钢材破坏荷载的预测程度可以控制在25%,以内,对Q345B钢材的预测可以控制在10%,以内,两种模型对破坏荷载的预测程度精准于对破坏位移的预测程度.  相似文献   

7.
为了弥补6008铝合金在冲击载荷作用下的力学性能及其动态本构模型研究的不足,采用RPL-100型材料试验机和分离式霍普金森压杆获取了该材料在不同应变率下的应力—应变曲线.结果表明:随着应变率的增加,6008铝合金的屈服强度、强度极限与流动应力增加,应变硬化率减小,屈服滞后现象明显.基于实验结果与Johnson-Cook模型,引入Cowper-Symonds本构模型来描述6008铝合金的应变率效应,同时考虑到该材料冲击过程中绝热温升的影响,构建了适用于6008铝合金的改进Johnson-Cook模型.结果表明,改进Johnson-Cook模型能够能较好地描述6008铝合金的应变率效应并能准确地预测其流动应力,可为实际工程中的数值模拟问题提供参考.  相似文献   

8.
预应力钢绞线动态力学拉伸性能及本构关系   总被引:1,自引:1,他引:0  
首先利用电液伺服加载试验机对单束钢绞线在(10~(-3)~10~(-1)s~(-1))应变率范围内进行动态力学拉伸试验;然后根据实验数据,分析了不同应变率对屈服强度的影响规律;并对我国设计规范中用于硬钢类材料简化计算的Ramberg-Osgood本构模型进行修正,以获得可以更好地描述钢绞线动态拉伸应力-应变关系的本构模型。研究表明,单束钢绞线的应变率越大,其屈服应变和极限应变越小,屈服强度越大。修正后的Ramberg-Osgood本构模型能够较好地描述钢绞线动态拉伸应力-应变关系;并且随着应变率的增大,钢绞线的硬化指数减小,残余应变增大。  相似文献   

9.
爆炸冲击荷载作用下温度和应变率对钢材动态力学性能的影响一直备受关注。Fe-C合金体系是钢材的基本组成部分,本文以Fe-C合金为基本研究对象,采用分子动力学方法模拟九种温度和四种应变率条件下Fe-C合金的单轴动态拉伸过程。结果表明:在所研究的温度和应变率范围内,Fe-C合金弹性模量对于应变率变化不敏感,对于温度变化非常敏感,随着温度的升高,弹性模量明显减小;相同温度条件下,屈服强度和峰值应变随应变率的增大而增大;相同应变率条件下,屈服强度和峰值应变随温度的升高而减小;温度和应变率对屈服强度的影响不具有相关性。基于分子动力学模拟,建立的纳米尺度下Fe-C合金动态拉伸力学性能计算公式能反映温度和应变率效应的共同影响,为钢材在爆炸冲击作用下动态拉伸力学性能描述提供依据。  相似文献   

10.
通过对TSZ410铁素体不锈钢进行高温稳态试验研究,得到了高温下初始弹性模量、名义屈服强度、抗拉强度、断后伸长率等主要力学性能指标,对比分析了Rasmussen模型和Gardner模型,并基于Rasmussen模型,提出了TSZ410不锈钢硬化指数的计算公式,建立了高温应力-应变本构关系,并与Q235B、S30408奥氏体不锈钢、EN 1.4003不锈钢进行了对比,研究揭示了温度对其力学性能的影响规律。研究表明,TSZ410不锈钢的初始弹性模量、名义屈服强度、抗拉强度随着温度的升高而逐渐下降,特别是在400~700℃温度段的下降速度最为显著;温度700℃时,初始弹性模量约为常温下的40%,名义屈服强度和抗拉强度降为常温下的15%左右。TSZ410不锈钢在高温下强度损失明显大于Q235B,而刚度损失明显小于Q235B;在温度低于500℃时,TSZ410不锈钢的强度损失显著小于S30408奥氏体不锈钢;当温度高于500℃后,则相反。  相似文献   

11.
400℃退火对ECAP形变Q235钢的强度和位错强化的影响   总被引:1,自引:0,他引:1  
将经过淬火预处理和等通道转角挤压加工(ECAP)的Q235钢进行400℃退火.采用拉伸试验、X射线衍射(XRD)分析及描述强度-位错密度关系的Taylor公式,研究400℃退火对ECAP形变低碳钢的强度和位错强化的影响.拉伸试验表明:400℃退火使ECAP形变Q235钢强度降低,屈服强度从825 MPa下降到725 MPa,加工硬化能力和塑性显著提高.基于XRD分析和Taylor公式的定量计算说明,400℃退火对ECAP形变Q235钢的位错强化影响很小,实际强度的降低不是来自于位错强化的降低,而是来自于其他强化机制(晶界、亚晶界等)的降低.  相似文献   

12.
通过单道次压缩实验,研究了屈服强度390 MPa级Ti微合金化高强钢的热变形行为,并建立了实验钢的变形抗力模型和动态再结晶数学模型.结果表明:随着变形温度的降低,变形抗力逐渐增大;随着应变速率的增大,应力-应变曲线由动态再结晶型转变为动态回复型.Q390钢的动态再结晶激活能为257.142 k J/mol.建立的高精度的数学模型可表征Ti微合金化Q390钢的高温变形行为.与常规成分体系相比,Ti微合金化成分设计的实验钢轧制时所需的轧制力较小,更容易发生动态再结晶,有利于奥氏体晶粒的细化,可有效地提高钢材强韧性.  相似文献   

13.
为明确截面形式对UHPC抗拉强度在钢筋超高性能混凝土(R-UHPC)梁抗弯承载力贡献的影响,考虑实测得到的7种不同钢纤维掺量UHPC的抗拉和抗压性能,对矩形、箱形和T形R-UHPC梁进行抗弯承载力计算,构建并分析抗拉强度贡献率、抗压强度利用率等指标.结果表明:UHPC根据其硬化段长短和其极限应变与钢筋屈服应变的关系,可划分为U0、 U1和U2类材料. UHPC抗拉强度的贡献率与截面形式有关:矩形梁箱形梁T形梁,对U1和U2类UHPC的矩形梁或箱形梁,宜考虑其抗拉强度对梁抗弯承载力的贡献.材料设计时,若考虑UHPC抗拉强度的作用,宜采用U2类材料.截面设计时, UHPC抗拉强度的贡献,矩形梁应考虑,箱形梁可考虑, T形梁可不考虑,宜采用箱形、 I形或工形梁截面以提高抗拉强度贡献. UHPC抗压强度利用率,随纤维掺量的增大而下降,利用率在45.5%~60.2%范围.工程应用时,可应用UHPC-NC叠合梁或预应力UHPC梁以提高抗压强度利用率.  相似文献   

14.
为了开发Q500GJE高性能超高层建筑用钢,利用Gleeble热/力学模拟、扫描电镜、透射电镜、背散射电子衍射、着色腐蚀金相等方法研究了轧后控冷冷速对TMCP交货低屈强比(≤0.80)Q500GJE钢组织和拉伸性能的影响。结果表明:试验钢在冷速5~25℃/s的范围内,形成由针状铁素体、粒状贝氏体以及M-A岛构成的混合组织。随着轧后冷速的提高,针状铁素体数量减少,粒状贝氏体数量增多,晶粒发生细化,位错密度升高,屈服强度和抗拉强度升高;随着轧后冷速的适当降低,硬相M-A岛的含量增加,尺寸增大,屈强比下降,应变硬化量增加。拉伸性能满足低屈强比Q500GJE钢要求的轧后控冷冷速是15~20℃/s。  相似文献   

15.
基于Gleeble-1500热力模拟试验机测定了Fe-22Mn-0.7C TWIP钢和Q235钢700~1300益范围内的静态拉伸行为.采用光学显微镜、扫描电子显微镜、能谱仪、电子探针微区分析等技术表征两钢种不同温度下的变形特征和断口形貌.通过分析基体化学成分、相体积分数、晶粒尺寸、凝固缺陷等因素探讨TWIP钢铸态热塑性的变化规律及其影响机制.研究结果表明,Fe-22Mn-0.7C TWIP钢700~1250益范围内的铸态抗拉强度高于Q235,而其断面收缩率低于40%,且断口均以沿枝晶间断裂方式为主.晶粒细化和控制溶质显微偏析有利于提高TWIP钢热塑性,与基体均质性改善有关.此外,增加应变速率TWIP钢拉伸强度和断面收缩率同时增大.  相似文献   

16.
为确定合理的高温中钢材应力-应变关系模型,在已有恒温加载试验研究的基础上,通过对高温中弹性模量、屈服强度、极限强度、硬化应变和极限应变等实测数据的拟合分析,提出高温中钢材的应力-应变关系模型.与ASCE和EC3中钢材的应力-应变关系模型相比,该模型的计算曲线与实测曲线吻合度更好.  相似文献   

17.
为提高汽车车身用双相钢(DP钢)激光焊接构件在动态载荷下应用的可靠性,研究焊接速度对1.4 mm厚DP780钢脉冲激光焊接接头组织和不同应变速率下拉伸性能的影响规律.结果表明,不同激光焊接速度下DP780钢接头均存在熔合区硬化和外侧热影响区软化现象,随焊接速度增加,接头的软化程度降低.接头的强度随应变速率增加而增加,抗拉强度和断裂延伸率随焊接速度增加呈先增加后减少的趋势.当焊接速度为400 mm/min时,接头表面成形性好、熔深和熔宽适中、无焊接缺陷、外侧热影响区软化程度最低(软化率为9%),熔合区硬度适中,接头整体强度和塑性指标达到最佳值.  相似文献   

18.
针对含裂纹损伤钢构件呈现脆性现象的问题,大多数研究者均假设裂纹与受力方向垂直,且假设屈强比不会随裂纹的变化而变化。然而,实际工程中裂纹出现的角度是随机的,且含裂纹损伤钢构件的屈强比会随着裂纹长度发生改变。针对Q235和Q355两种不同钢材,本文对不同角度的含裂纹损伤钢构件进行试验和分析研究。考虑不同裂纹角度下,且屈强比变化的情况下,研究含裂纹损伤钢构件呈现脆性现象的情况。研究发现:计算屈服强度时,任意裂纹角度均可以投影成与受力方向垂直的裂纹处理。当相对裂纹长度一定时,屈强比越大,含裂纹损伤钢构件越容易呈现脆性性能。当相对裂纹长度增大时,含裂纹损伤钢构件的屈强比增大,采用变化的屈强比,改进了剩余极限强度公式,使公式计算值与试验值误差小于1%。本文研究成果对含裂纹损伤钢构件后期的预防、修复和加固具有一定的理论价值和现实意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号