首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为保证输气管道在滑坡灾害下能够安全运行,需对输气管道滑坡灾害进行影响因素敏感性分析,以识别出管道应力与影响因素之间的敏感状况.利用ABAQUS有限元软件建立输气管道滑坡灾害数值分析模型,计算出管道的最大Mises应力值;应用敏感性系数分析法分析了输气管道滑坡灾害的主要影响因素,得出主要影响因素与管道应力之间的变化规律.计算结果表明,管道在横穿滑坡区域时,除管道壁厚与管道应力呈反向变化关系外,滑坡宽度、内摩擦角度、土体黏聚力、管道埋深和管内压力都与管道应力呈正向变化关系;管道壁厚为影响管道应力的关键因素,其余各因素敏感性从强到弱的排列顺序为,滑坡宽度土体黏聚力内摩擦角管内压力管道埋深.  相似文献   

2.
机坪输油管道荷载附加应力分析   总被引:1,自引:1,他引:0  
应用ABAQUS有限元软件,考虑管土相互作用,建立并验证了管道结构有限元分析模型.应用该模型,分析了管周附加应力的分布特征,计算了飞机、施工重型车辆和压路机荷载作用下,管道附加应力及其引起的管道结构应力和变形随管道埋深的变化规律.结果表明:不同管道埋深对应的管周附加应力在管顶至管两侧60°的范围内有显著差异,且该范围内附加应力近似呈抛物线分布.即使管道埋深小至1倍管径时,飞机荷载和施工重型车辆荷载引起的管道结构应力和变形仍远小于容许值,而压路机高振幅振动压应力引起的管道结构应力达到管道强度失效的临界标准,是管道承受的最不利外荷载类型,对管道埋深有重要影响.  相似文献   

3.
在影响燃气管道安全的众多因素中,由于埋深不够导致的燃气管道破裂劳损占有相当大的比例,本文利用有限元方法对于有防护措施的浅埋地下埋地管道的受力进行探讨,从而对于出浅埋管道的各种防护措施的防护效果具有一定帮助。  相似文献   

4.
余剑锋 《广东科技》2007,(8):184-184
本文通过建立三维有限元模型,对项管施工引起的地表沉降进行了数值模拟分析.并对管道埋深和管道直径两种因素对地表沉降的影响进行了探讨,得出一些有益结论,为采取措施减少地表变形提供了借鉴.  相似文献   

5.
针对采空区土体沉降严重威胁埋地输气管道安全运行的状况,对土体沉降后管道的受力进行分析,基于管—土相互作用单元并结合三向土模型弹簧,运用有限元分析软件对土体沉降下埋地输气管道进行数值模拟,主要分析了埋深、采深与采厚对管道应力、位移和应变的影响.模拟结果表明:在采空塌陷区,管道覆土厚度的变化对管道的影响并不是主要的;相同采厚下,采深变化引起的管道力学特征值的改变量相差较小;相同采深下,随着采厚的增大,管道的各项力学特征值均有所增加.  相似文献   

6.
减少给水管道埋深的探讨   总被引:1,自引:0,他引:1  
本文论述了减少给水管道埋深在整个工程设计中的经济地位,研究了管道浅埋的实际意义.影响管道理深的因素,管道浅埋的可能性及管道浅埋的热力计算。  相似文献   

7.
基于斯潘格勒理论,简化了有限元分析中管土间复杂的相互作用.通过最小二乘法确定了有限元建模中的变量参数最大土压,从而建立了呈抛物线分布的水平静土压模型,实现了埋地柔性管线的有限元迭代计算;分析了其埋设深度和土体力学性能对埋地管道的径向与轴向变形的影响,以及地基差异引起的管道沉降问题.结果表明:该方法能合理地反映出土体与结构的相互作用,获得埋地柔性管道的应力、应变等结果,可应用于长距离埋地柔性管道和管件的设计及结构设计.  相似文献   

8.
为研究冲击荷载作用下埋地长输管道的受力性能,制作一个土箱—管道缩尺模型,进行落锤冲击试验,并建立落锤冲击埋地管道的有限元计算模型,对管道动态响应过程进行数值模拟。主要分析了管道壁厚、管径、埋深和冲击能量等参数对管道受力性能的影响,探讨埋地长输管道在冲击荷载作用下的整体变形特点和应变分布规律。研究结果表明:在冲击荷载作用下,冲击能量增加,管道跨中表面的应变峰值增大;相同工况下大管径和薄壁管道应变值大,管道覆土越深,管道应变峰值越小,土体的缓冲作用削弱了管道受到的冲击作用;通过有限元模拟结果与试验结果对比分析,两者一致性较好,故在实际工况下可用有限元模拟落石对埋地管道的冲击作用。  相似文献   

9.
考虑薄壳的大变形和管土的相互作用,建立埋地管道的管土耦合非线性有限元模型,分析管道在横向滑坡作用下的响应规律,讨论了滑坡宽度、滑坡位移、滑坡角度、管道埋深、管道内压等相关工程参数对分析结果的影响,并应用应变准则对管道进行安全评价.结果显示,管道的高应力、应变主要出现在滑坡中间区域及滑坡区与非滑坡区交界处;相同的滑坡位移下,滑坡宽度越小,管道的轴向拉应变越大;滑坡角度越小,管道的轴向拉应变越大;在相同的滑坡规模下,管道轴向拉应变随内压、埋深的增加而不断升高.分析结果可为埋地管道的抗震设计和施工提供参考.  相似文献   

10.
跨断层埋地管道在断层错动下力学模型设计和受力分析一直是生命线工程的前沿问题.弹簧-管道-土体模型中,断层每侧沿管道方向的近断层土体采用实体建模,此范围内的土体与管道相互作用采用接触进行模拟,远离断层的管道与土体相互作用采用等效非线性弹簧模拟.采用有限元分析软件对模型进行实现,有限元模型考虑了管道与土体的材料非线性、几何非线性,管道采用四节点壳单元.分析了断层破碎带宽度、断层错距、管道埋深、直径,壁厚对管道的受力影响,得出一些有益结论.  相似文献   

11.
为了计算埋地悬空管道的可靠度,基于蒙特卡洛统计模拟法,结合受力特征,建立了埋地悬空管道结构可靠度计算模型并计算了某黄土湿陷区埋地悬空管道的可靠度。为了描述不同影响因素对管道可靠度的影响程度,从管道失效概率的角度定义了参数的敏感性指标,对管道设计中经常涉及的管道外径、壁厚、埋深、悬空长度、屈服强度、温度差、管道内压7个随机变量进行了敏感性分析,讨论了参数的变化对管道可靠度的影响。结果表明:建立的埋地悬空管道可靠度计算模型能够对埋地悬空管道的可靠度进行计算;管道的悬空长度对可靠性影响程度最大,最大程度减小管道的悬空长度,适当减小管道埋深,降低管道内压,增大管道壁厚和屈服强度,有助于提高管道的可靠度。  相似文献   

12.
针对直埋热水供热管道弯管受力的复杂性,基于土弹簧模型建立了三维热-力耦合有限元模型,分析了直埋直角弯管应力的主要影响因素,给出了缩短弯臂长度的热-力耦合有限元模型。建模中管土相互作用考虑了介质的重力和覆土重力等的作用,弯头管段的边界条件施加在2个弯臂端头。结果表明,直埋弯管在温升作用下的峰值应力远大于内压作用下的峰值应力;直埋弯管的一次应力随管道壁厚、管道埋深的增加而降低,随内压、弯头曲率半径的增加而增加;直埋弯管的二次应力随管道壁厚的增加而降低,随内压、埋深、温升、弯头曲率半径、弯头端部位移的增加而增加;弯头截面竖向椭圆化对弯头是有利的,而横向椭圆化是有害的;地面荷载作用使弯头最大当量应力减小,对弯头起保护作用。该研究旨在为直埋管道的安全性分析提供帮助。  相似文献   

13.
纵向布置作为埋地管道跨越山区地形的主要方式之一,滑坡对其致灾模式与横向布置埋地管道存在显著差异,横向布置埋地管道的变形机制和减灾对策并不适用于纵向布置的埋地管道。本文采用ABAQUS有限元软件研究埋地管道承载纵向滑坡作用的变形破坏规律,分析滑坡几何形态对管道变形破坏规律的影响,探讨改变管道径厚比、埋深、内压值对减小埋地管道受滑坡作用变形破坏的效果。研究结果表明:①埋地管道遭受滑坡作用最大的应变发生在滑坡坡脚管段;②埋地管道应变随滑坡坡度、厚度、长度增大而增大,其中滑坡厚度对管道遭受滑坡作用变形破坏影响程度最大,其次是滑坡长度,最后是滑坡坡度;③减小管道径厚比、埋深、内压都能有效增强管道的抗灾能力,从管道施工难易程度、成本、减灾效果以及运营管理四个方面考虑,最佳方案是减小管道的径厚比,其次是改变管道内压,最后是改变管道的埋深。  相似文献   

14.
基于弹塑性力学理论,采用有限元分析方法,建立了岩土坍塌作用下埋地集输管道分析模型,研究了岩石坍塌作用下不同因素对埋地集输管道应力影响规律.结果表明:冲击载荷随石块边长的增加呈指数形式上升,正方体边长改变1.4 m时,冲击载荷可改变22.4 MPa.运行压力、温度、管道铺设坡度对管道壁面应力影响较小,而冲击载荷、腐蚀是埋地集输管道安全的主要影响因素.当冲击载荷大于10.5 MPa时,管道进入塑性变形区.岩石坍塌冲击载荷较大时,管道壁面最大等效应力随着管道径厚比的增加而减少.当径厚比改变了3.8,管道壁面最大等效应力可减小44 MPa;当岩石坍塌冲击载荷较小时,管道壁面最大等效应力出现极小值点.  相似文献   

15.
热力耦合作用下直埋热力管道破裂的有限元分析   总被引:2,自引:0,他引:2  
综合考虑多种影响因素,运用ADINA有限元软件,对跨越断层的直埋热力管道的破坏情况进行了研究,建立基于热力耦合作用的管道、场地的三维有限元模型,首先分析其应力、应变情况,进而分析在热力耦合作用下管道破裂的机理.为预防热力管道破裂及破坏后的损失评估提供依据.  相似文献   

16.
土体塌陷是导致埋地管线破坏的重要原因之一。到目前为止, 国内外对塌陷区埋地管线反应的有限元分析甚少。为分析土体塌陷对埋地管线的影响,通过ANSYS有限元分析软件,建立管土模型,通过设置不同参数,如塌陷范围、埋深、管壁厚度,得出埋地管线在塌陷情况下的挠曲变形和轴向应力曲线。得出在土体塌陷下,增加壁厚和减少埋深均可减小埋地管道的破坏,同时得到埋地管道受力最大的位置在塌陷与非塌陷区交界处,因此应选此处为控制截面。设计中,应避免在控制界面附近设置接头。  相似文献   

17.
王俊  封辉  高琦  王鹏 《科学技术与工程》2020,20(33):13660-13666
针对不同因素对管道泄漏工况的影响进行了模拟研究。管道的铺设方式一般为埋地铺设,长时间埋地管道会因为外力破坏或管道自身老化、腐蚀穿孔等因素造成管道泄漏。管道泄漏时会造成重大压力损失和管道流体的损失,管道大孔泄漏后容易在地面上被检测出来,小孔泄漏不容易被检测出来。因此采用数值模拟方法,通过模型简化,同时考虑计算精度和计算成本,建立了埋地管道小孔泄漏扩散模型。分别研究泄漏压力、泄漏孔径、管道埋深、土壤性质、环境温度、泄漏孔形状和障碍物等因素对埋地管道泄漏扩散的影响。  相似文献   

18.
本文针对季节性冻土地区地下直埋给水管道运行过程中出现的工程问题,在分析环境温度季节性周期变化等因素对管道传热影响的基础上建立给水管道传热数学模型,采用数值方法计算季节性温度变换影响下管道周围的温度场,并和该地区运用探针法所得数据作对比分析,结果表明:计算与实测温度值之间的平均绝对误差为0.49℃,最大绝对误差是1.10℃,所建模型正确,符合实际情况,精确度较高;利用上述模型计算不同埋深处管道周围温度场分布,并绘制温度等值线图,对等值线图的特征分析,结果表明:实例中给水管道埋深可以减小到1.5 m。本文研究方法可以为管道传热的研究和实际工程中管道埋深计算提供参考。  相似文献   

19.
为了分析地面堆载对高后果区埋地管道承载能力的影响,采用ANSYS workbench有限元软件建立了堆载-土壤-管道应力状态分析三维模型,采用堆载体直接加载在地基土壤上,分析管道在堆载下的承载能力响应,采用理论计算验证了模型的可行性,分别探讨了堆载高度、管道埋深、堆载距离、管径、壁厚和土壤泊松比因素对管道承载能力的影响。结果表明,堆载下管道应力最大出现在堆载下方,并且向管道两边递减,堆载范围内的承载能力明显减弱。堆载高度和堆载距离对管道承载能力的影响最大,堆载距离的微小改变可以明显提高管道的承载能力,堆载高度的增加同时又导致管道承载能力减弱,通过堆载高度和堆载距离的变化规律可以用来判断,在管道极限承载能力范围内,不同堆载位置下的极限堆载高度。在一定堆载高度下,管道存在一个临界埋深,此时管道承载能力最大。管径、壁厚和土壤性质对管道承载能力有影响但较小。通过本文的研究可以为判断高后果区埋地管道占压下安全状态提供指导。  相似文献   

20.
针对于管道横穿滑坡体存在的潜在危害,基于光滑粒子流体动力学与有限元耦合算法(SPH-FEM)构建土-管-油完全耦合模型,综合考虑材料、几何及接触非线性,分析土-管-油作用机制,并探讨滑坡体位移、埋深及径厚比等主要因素对管道力学行为的影响。研究表明,相比于简化为内压的油管(存在内压的空管),当考虑管内成品油存在时,均存在滑坡作用下管道典型的损伤行为,但在满管输送工况下,管内成品油的作用由滑坡初始时刻的“抗变”转变为“助变”,且对管道位移形变产生更大的影响,与简化空管相比,其位移增加了10.63%(应力增加了4.96%);随滑坡体位移、滑坡规模的增大及埋深的减小(对于敷设于滑坡中部的管道),会产生更大位移及塑性形变区域;对于穿越滑坡区的管道,可适量增加壁厚以增强管道极限承载能力。研究所得成果可为保障管道安全运行及滑坡灾害下管道防护给予理论指导与技术支持。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号