首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The availability of cloned cDNAs encoding the four subunits of the Torpedo acetylcholine receptor, which can be expressed to make functional receptors in Xenopus oocytes, has made possible a detailed investigation of the functions of the different structural components of the receptor. The functional analysis of receptors with alpha-subunits altered at specific sites by site-directed mutagenesis of the cDNA has allowed the location of specific regions of the alpha-subunit molecule involved in acetylcholine binding and forming a transmembrane ionic channel.  相似文献   

2.
A Mikami  K Imoto  T Tanabe  T Niidome  Y Mori  H Takeshima  S Narumiya  S Numa 《Nature》1989,340(6230):230-233
In cardiac muscle, where Ca2+ influx across the sarcolemma is essential for contraction, the dihydropyridine (DHP)-sensitive L-type calcium channel represents the major entry pathway of extracellular Ca2+. We have previously elucidated the primary structure of the rabbit skeletal muscle DHP receptor by cloning and sequencing the complementary DNA. An expression plasmid carrying this cDNA, microinjected into cultured skeletal muscle cells from mice with muscular dysgenesis, has been shown to restore both excitation-contraction coupling and slow calcium current missing from these cells, so that a dual role for the DHP receptor in skeletal muscle transverse tubules is suggested. We report here the complete amino-acid sequence of the rabbit cardiac DHP receptor, deduced from the cDNA sequence. We also show that messenger RNA derived from the cardiac DHP receptor cDNA is sufficient to direct the formation of a functional DHP-sensitive calcium channel in Xenopus oocytes. Furthermore, higher calcium-channel activity is observed when mRNA specific for the polypeptide of relative molecular mass approximately 140,000 (alpha 2-subunit) associated with skeletal muscle DHP receptor is co-injected.  相似文献   

3.
Structural and functional basis for GABAA receptor heterogeneity   总被引:37,自引:0,他引:37  
When gamma-aminobutyric acid (GABA), the major inhibitory neurotransmitter in vertebrate brain, binds to its receptor it activates a chloride channel. Neurotransmitter action at the GABAA receptor is potentiated by both benzodiazepines and barbiturates which are therapeutically useful drugs (reviewed in ref. 1). There is strong evidence that this receptor is heterogeneous. We have previously isolated complementary DNAs encoding an alpha- and a beta-subunit and shown that both are needed for expression of a functional GABAA receptor. We have now isolated cDNAs encoding two additional GABAA receptor alpha-subunits, confirming the heterogeneous nature of the receptor/chloride channel complex and demonstrating a molecular basis for it. These alpha-subunits are differentially expressed within the CNS and produce, when expressed with the beta-subunit in Xenopus oocytes, receptor subtypes which can be distinguished by their apparent sensitivity to GABA. Highly homologous receptor subtypes which differ functionally seem to be a common feature of brain receptors.  相似文献   

4.
Existence of distinct sodium channel messenger RNAs in rat brain   总被引:85,自引:0,他引:85  
M Noda  T Ikeda  T Kayano  H Suzuki  H Takeshima  M Kurasaki  H Takahashi  S Numa 《Nature》1986,320(6058):188-192
The sodium channel is a voltage-gated ionic channel essential for the generation of action potentials. It has been reported that the sodium channels purified from the electric organ of Electrophorus electricus (electric eel) and from chick cardiac muscle consist of a single polypeptide of relative molecular mass (Mr) approximately 260,000 (260K), whereas those purified from rat brain and skeletal muscle contain, in addition to the large polypeptide, two or three smaller polypeptides of Mr 37-45K. Recently, we have elucidated the primary structure of the Electrophorus sodium channel by cloning and sequencing the DNA complementary to its messenger RNA. Despite the apparent homogeneity of the purified sodium channel preparations, several types of tetrodotoxin (or saxitoxin) binding sites or sodium currents have been observed in many excitable membranes. The occurrence of distinguishable populations of sodium channels may be attributable to different states of the same channel protein or to distinct channel proteins. We have now isolated complementary DNA clones derived from two distinct rat brain mRNAs encoding sodium channel large polypeptides and present here the complete amino-acid sequences of the two polypeptides (designated sodium channels I and II), as deduced from the cDNA sequences. A partial DNA sequence complementary to a third homologous mRNA from rat brain has also been cloned.  相似文献   

5.
HYPERKALAEMIC periodic paralysis (HYPP) is an autosomal dominant disease that results in episodic electrical inexcitability and paralysis of skeletal muscle. Electrophysiological data indicate that tetrodotoxin-sensitive sodium channels from muscle cells of HYPP-affected individuals show abnormal inactivation. Genetic analysis of nine HYPP families has shown tight linkage between the adult skeletal muscle sodium channel alpha-subunit gene on chromosome 17q and the disease (lod score, z = 24; recombination frequency 0 = 0), strongly suggesting that mutations of the alpha-subunit gene cause HYPP. We sequenced the alpha-subunit coding region isolated from muscle biopsies from affected (familial HYPP) and control individuals by cross-species polymerase chain reaction-mediated complementary DNA cloning. We have identified an A----G substitution in the patient's messenger RNA that causes a Met----Val change in a highly conserved region of the alpha-subunit, predicted to be in a transmembrane domain. This same change was found in a sporadic case of HYPP as a new mutation. We have therefore discovered a voltage-gated channel mutation responsible for a human genetic disease.  相似文献   

6.
Amino-acid sequences derived from complementary DNAs encoding the alpha- and beta-subunits of the GABA/benzodiazepine receptor from bovine brain show homology with other ligand-gated receptor subunits, suggesting that there is a super-family of ion-channel-containing receptors. Co-expression of the in vitro-generated alpha-subunit and beta-subunit RNAs in Xenopus oocytes produces a functional receptor and ion channel with the pharmacological properties characteristic of the GABAA receptor.  相似文献   

7.
E Y Isacoff  Y N Jan  L Y Jan 《Nature》1990,345(6275):530-534
Potassium channels show a wide range of functional diversity. Nerve cells typically express a number of K+ channels that differ in their kinetics, single-channel conductance, pharmacology, and sensitivity to voltage and second messengers. The cloning of the Shaker gene in Drosophila, and of related genes, has revealed that the encoded K+ channel polypeptides resemble one of the four internally homologous domains of the alpha-subunits of Na+ channels and Ca2+ channels, indicating that K+ channels may form by the co-assembly of several polypeptides. In this report we provide evidence that the Shaker A-type K+ channels expressed in Xenopus oocytes contain several Shaker polypeptides, that heteromultimeric channels may form through assembly of different channel polypeptides, that the kinetics or pharmacology of some heteromultimeric channels differ from those of homomultimeric channels, and that channel polypeptides from the fruit fly can co-assemble with homologous polypeptides from the rat. We suggest that heteromultimer formation may increase K+ channel diversity beyond even the level expected from the large number of K+ channel genes and alternative splicing products.  相似文献   

8.
Schumacher MA  Rivard AF  Bächinger HP  Adelman JP 《Nature》2001,410(6832):1120-1124
Small-conductance Ca2+-activated K+ channels (SK channels) are independent of voltage and gated solely by intracellular Ca2+. These membrane channels are heteromeric complexes that comprise pore-forming alpha-subunits and the Ca2+-binding protein calmodulin (CaM). CaM binds to the SK channel through the CaM-binding domain (CaMBD), which is located in an intracellular region of the alpha-subunit immediately carboxy-terminal to the pore. Channel opening is triggered when Ca2+ binds the EF hands in the N-lobe of CaM. Here we report the 1.60 A crystal structure of the SK channel CaMBD/Ca2+/CaM complex. The CaMBD forms an elongated dimer with a CaM molecule bound at each end; each CaM wraps around three alpha-helices, two from one CaMBD subunit and one from the other. As only the CaM N-lobe has bound Ca2+, the structure provides a view of both calcium-dependent and -independent CaM/protein interactions. Together with biochemical data, the structure suggests a possible gating mechanism for the SK channel.  相似文献   

9.
A Katz  D Wu  M I Simon 《Nature》1992,360(6405):686-689
The activation of heterotrimeric G proteins results in the exchange of GDP bound to the alpha-subunit for GTP and the subsequent dissociation of a complex of the beta- and gamma-subunits (G beta gamma). The alpha-subunits of different G proteins interact with a variety of effectors, but less is known about the function of the free G beta gamma complex. G beta gamma has been implicated in the activation of a cardiac potassium channel, a retinal phospholipase A2 (ref. 9) and a specific receptor kinase, and in vitro reconstitution experiments indicate that the G beta gamma complex can act with G alpha subunit to modulate the activity of different isoforms of adenylyl cyclase. Of two phospholipase activities that can be separated in extracts of HL-60 cells, purified G beta gamma is found to activate one of them. Here we report that in co-transfection assays G beta gamma subunits specifically activate the beta 2 and not the beta 1 isoform of phospholipase, which acts on phosphatidylinositol. We use transfection assays to show also that receptor-mediated release of G beta gamma from G proteins that are sensitive to pertussis toxin can result in activation of the phospholipase. This effect may be the basis of the pertussis-toxin-sensitive phospholipase C activation seen in some cell systems (reviewed in refs 13 and 14).  相似文献   

10.
The nicotinic acetylcholine receptor (AChR) from fish electric organ has a subunit structure of alpha 2 beta gamma delta, and this is thought to be also the case for the mammalian skeletal muscle AChR. By cloning and sequencing the complementary or genomic DNAs, we have previously elucidated the primary structures of all four subunits of the Torpedo californica electroplax and calf muscle AChR and of the alpha- and gamma-subunits of the human muscle AChR; the primary structures of the gamma-subunit of the T. californica AChR and the alpha-subunit of the Torpedo marmorata AChR have also been deduced elsewhere. We have now cloned DNA complementary to the calf muscle messenger RNA encoding a novel polypeptide (the epsilon-subunit) whose deduced amino-acid sequence has features characteristic of the AChR subunits and which shows higher sequence homology with the gamma-subunit than with the other subunits. cDNA expression studies indicate that the calf epsilon-subunit, as well as the calf gamma-subunit, can replace the Torpedo gamma-subunit to form the functional receptor in combination with the Torpedo alpha-, beta- and delta-subunits.  相似文献   

11.
C Kleuss  H Scherübl  J Hescheler  G Schultz  B Wittig 《Nature》1992,358(6385):424-426
Regulatory GTP-binding proteins (G proteins) are membrane-attached heterotrimers (alpha, beta, gamma) that mediate cellular responses to a wide variety of extracellular stimuli. They undergo a cycle of guanine-nucleotide exchange and GTP hydrolysis, during which they dissociate into alpha-subunit and beta gamma complex. The roles of G-protein alpha-subunits in these processes and for the specificity of signal transduction are largely established; the beta- and gamma-subunits are essential for receptor-induced G-protein activation and seem to be less diverse and less specific. Although the complementary DNAs for several beta-subunits have been cloned, isolated subunits have only been studied as beta gamma complexes. Functional differences have been ascribed to the gamma-subunit on the basis of extensive sequence similarity among beta-subunits and apparent heterogeneity in gamma-subunit sequences. Beta gamma complexes can interact directly or indirectly with different effectors. They seem to be interchangeable in their interaction with pertussis toxin-sensitive alpha-subunits, so we tested this by microinjecting antisense oligonucleotides into nuclei of a rat pituitary cell line to suppress the synthesis of individual beta-subunits selectively. Here we show that two out of four subtypes of beta-subunits tested (beta 1 and beta 3) are selectively involved in the signal transduction cascades from muscarinic M4 (ref. 4) and somatostatin receptors, respectively, to voltage-dependent Ca2+ channels.  相似文献   

12.
G Varadi  P Lory  D Schultz  M Varadi  A Schwartz 《Nature》1991,352(6331):159-162
The L-type voltage-dependent calcium channel is an important link in excitation-contraction coupling of muscle cells (reviewed in refs 2 and 3). The channel has two functional characteristics: calcium permeation and receptor sites for calcium antagonists. In skeletal muscle the channel is a complex of five subunits, alpha 1, alpha 2, beta, gamma and delta. Complementary DNAs to these subunits have been cloned and their amino-acid sequences deduced. The skeletal muscle alpha 1 subunit cDNA expressed in L cells manifests as specific calcium-ion permeation, as well as sensitivity to the three classes of organic calcium-channel blockers. We report here that coexpression of the alpha 1 subunit with other subunits results in significant changes in dihydropyridine binding and gating properties. The available number of drug receptor sites increases 10-fold with an alpha 1 beta combination, whereas the affinity of the dihydropyridine binding site remains unchanged. Also, the presence of the beta subunit accelerates activation and inactivation kinetics of the calcium-channel current.  相似文献   

13.
K Steinmeyer  C Ortland  T J Jentsch 《Nature》1991,354(6351):301-304
Skeletal muscle is unusual in that 70-85% of resting membrane conductance is carried by chloride ions. This conductance is essential for membrane-potential stability, as its block by 9-anthracene-carboxylic acid and other drugs causes myotonia. Fish electric organs are developmentally derived from skeletal muscle, suggesting that mammalian muscle may express a homologue of the Torpedo mamorata electroplax chloride channel. We have now cloned the complementary DNA encoding a rat skeletal muscle chloride channel by homology screening to the Cl- channel from Torpedo. It encodes a 994-amino-acid protein which is about 54% identical to the Torpedo channel and is predominantly expressed in skeletal muscle. Messenger RNA amounts in that tissue increase steeply in the first 3-4 weeks after birth, in parallel with the increase in muscle Cl- conductance. Expression from cRNA in Xenopus oocytes leads to 9-anthracene-carboxylic acid-sensitive currents with time and voltage dependence typical for macroscopic muscle Cl- conductance. This and the functional destruction of this channel in mouse myotonia suggests that we have cloned the major skeletal muscle chloride channel.  相似文献   

14.
The role of contractile proteins in the structural organisation of the interphase nucleus and of metaphase chromosomes is largely unknown. Actin has been found in interphase nuclei of different species, especially in association with condensed chromatin. In the germinal vesicle (nucleus) of Xenopus oocytes, actin has been localised in the nuclear gel supporting the chromosomes and the extrachromosomal nucleoli. It has been reported that the premeiotic lampbrush chromosomes in these germinal vesicles are positively stained for actin and tubulin by the immunoperoxidase technique. Moreover, the longitudinal contraction of these chromosomes is ATP dependent. Therefore it has been suggested that actin participates in the structural organisation of the highly specialised lampbrush chromosomes. However, actin is not a major component of the metaphase chromosome scaffold. The results reported here suggest that actin is involved in the condensation of Xenopus chromosomes.  相似文献   

15.
New mammalian chloride channel identified by expression cloning.   总被引:30,自引:0,他引:30  
M Paulmichl  Y Li  K Wickman  M Ackerman  E Peralta  D Clapham 《Nature》1992,356(6366):238-241
Ion channels selectively permeable to chloride ions regulate cell functions as diverse as excitability and control of cell volume. Using expression cloning techniques, a complementary DNA from an epithelial cell line has been isolated, sequenced and its putative structure examined by site-directed mutagenesis. This cDNA, encoding a 235-amino-acid protein, gave rise to a chloride-selective outward current when expressed in Xenopus oocytes. The expressed, outwardly rectifying chloride current was calcium-insensitive and was blocked by nucleotides applied to the cell surface. Mutation of a putative nucleotide-binding site resulted in loss of nucleotide block but incurred dependence on extracellular calcium concentration. The unusual sequence of this putative channel protein suggests a new class of ion channels not related to other previously cloned chloride channels.  相似文献   

16.
J F Fiekers  I G Marshall  R L Parsons 《Nature》1979,281(5733):680-682
Antibiotic-induced muscle paralysis has frequently been found in both experimental animals and man with three distinct classes of antibiotic: (1) streptomycin and related aminoglycoside compounds, (2) polymyxins and (3) tetracyclines. Recently lincomycin and its chemical congener, clindamycin, have been reported to produce muscle paralysis which has different characteristics from those seen with other classes of antibiotic. Although closely related in chemical structure, lincomycin and clindamycin also seem to produce muscle paralysis by different mechanisms. Clindamycin is considered to exert a direct depressant action on muscle contractility whereas the action of lincomycin is considered to be primarily a depression of neuromuscular transmission. We report here that each of these antibiotics had a significant but different influence on endplate channel behaviour. Clindamycin increased the rate of miniature endplate current (m.e.p.c.) decay and reduced its voltage sensitivity without altering its exponential nature. Lincomycin split m.e.p.c. decay into an initial rapid phase followed by a prolonged phase.  相似文献   

17.
K+ channel blockers of scorpion venoms are of important value in studying pharmacology and physiology of specific K+ channel of cells. Based on the amino acid sequences of BmP01 previously characterized as a small-conductance Ca2+-activated K+ channel blocker, two “back to back” degenarate primers have been designed and synthesized for inverse PCR strategy, its full-length cDNA has been cloned from the venom gland of the Chinese scorpionButhus martensii. The cDNA is composed of 3 parts: 5′ UTR, ORF and 3′ UTR. The flanking sequence of translation initiation codon ATG is AAAATGA, which is highly conserved in scorpion Na+ channel toxin and protozoan genes, suggesting that these genes may have followed a common mechanism for translation initiation. The 3′ UTR contains poly(A) signal AATAAA. The open reading frame encodes a precursor of 57 residues with a signal peptide of 28 residues and a mature peptide of 29 residues. The signal peptide is rich in hydrophobic amino acid residues and its length is significantly different from that of the determined scorpion Na+ channel toxin. The deduced amino acid sequence of mature peptide is completely consistent with BmP01 previously determined by primary structure analysis.  相似文献   

18.
T A Springer  D B Teplow  W J Dreyer 《Nature》1985,314(6011):540-542
Cell-surface adherence reactions are fundamental to the biology of lymphocytes, monocytes and granulocytes. The lymphocyte function-associated 1 (LFA-1) and macrophage 1 (Mac-1) glycoproteins mediate differing types of adhesion reactions on these cells. LFA-1 participates in T-lymphocyte and natural killer-cell adhesion to target cells, whereas the Mac-1 antigen is identical to the complement receptor type 3, which mediates adhesion of monocytes and granulocytes to C3bi-sensitized particles. Deficiency of these proteins, in a heritable disease, results in multiple adhesion-related leukocyte defects. LFA-1 and Mac-1 resemble one another in overall structure, having alpha-subunits of relative molecular mass (Mr) 180,000 and 170,000, respectively, which are non-covalently associated with beta-subunits of Mr 95,000 in alpha 1 beta 1 complexes. Peptide mapping and immunological cross-reactivity have shown that the beta-subunits are highly related if not identical, but have revealed no similarities between the alpha-subunits. Nonetheless, the shared beta-subunit suggested that LFA-1 and Mac-1 might be members of a protein family containing diversified but evolutionarily related alpha-subunits. Therefore, we examine here the structure of the alpha-subunits by N-terminal amino-acid sequencing. Sequence homology shows that the alpha-subunits are members of a novel leukocyte adhesion protein family, and suggests that their evolution occurred by gene duplication. A search for similarities to previously sequenced proteins reveals a further unexpected homology between LFA-1 and leukocyte (alpha) interferons.  相似文献   

19.
T Wagenknecht  R Grassucci  J Frank  A Saito  M Inui  S Fleischer 《Nature》1989,338(6211):167-170
The calcium channel responsible for the release of Ca2+ from the sarcoplasmic reticulum of skeletal muscle during excitation-contraction coupling has recently been identified and purified. The isolated calcium channel has been identified morphologically with the 'foot' structures which are associated with the junctional face membrane of the terminal cisternae of sarcoplasmic reticulum. In situ, the foot structure extends across the gap of the triad junction from the terminal cisternae of the reticulum to the transverse tubule. We describe here the three-dimensional architecture (3.7 nm resolution) of the calcium channel/foot structure from fast-twitch rabbit skeletal muscle, which we determined from electron micrographs of isolated, non-crystalline structures that had been tilted in the electron microscope. The reconstruction reveals two different faces and an internal structure in which stain accumulates at several interconnected locations, which could empty into the junctional gap of the triad junction. The detailed architecture of the channel complex is relevant to understanding both the physical path followed by calcium ions during excitation-contraction coupling and the association of the terminal cisternae and the transverse tubules in the triad junction.  相似文献   

20.
Heteromultimeric channels formed by rat brain potassium-channel proteins   总被引:27,自引:0,他引:27  
An important step towards understanding the molecular basis of the functional diversity of voltage-gated K+ channels in the mammalian brain has been the discovery of a family of genes encoding rat brain K+ channel-forming (RCK) proteins. All species of these RCK proteins form homomultimeric voltage-gated K+ channels with distinct functional characteristics in Xenopus laevis oocytes following injection of the respective cRNAs. RCK-specific mRNAs are coexpressed in several regions of the brain, suggesting that RCK proteins also assemble into heteromultimeric K+ channels. In addition expression experiments with fractionated poly(A)+ mRNA have suggested that heteromultimeric K+ channels may occur in mammalian brain. We report here that heteromultimeric K+ channels composed of two different RCK proteins (RCK1 and RCK4) assemble after cotransfection of HeLa cells with the corresponding cDNAs and after coinjection of the corresponding cRNAs into Xenopus oocytes. The heteromultimeric RCK1, 4 channel mediates a transient potassium outward current, similar to the RCK4 channel but inactivates more slowly, has a larger conductance and is more sensitive to block by dendrotoxin and tetraethylammonium chloride.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号