首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
采用喷射成形工艺制备了含铌和不含铌M3∶2型高速钢,然后进行锻造加工.利用扫描电子显微镜、X射线能谱仪、X射线衍射仪等研究了铌对喷射成形M3∶2型高速钢组织和性能的影响.铌的加入细化了沉积态的组织,减小了M2C共晶碳化物尺寸,而对M2C的成分影响不明显.沉积态中MC碳化物的数量随铌含量提高而增多,且其成分变化显著.铌的加入可以提高喷射成形M3∶2型高速钢的抗回火软化性和二次硬化能力.但是,当铌质量分数为1%时,组织中形成数量较多且难以破碎的以铌为主的块状MC碳化物,导致钢的弯曲强度和冲击韧性下降.铌质量分数为0.5%的喷射成形M3∶2型高速钢可以获得最佳的硬度、弯曲强度和冲击韧性.  相似文献   

2.
采用喷射成形技术制备了 M3型高速钢和以 Nb 替代 V 的 M3型高速钢。利用扫描电镜、X 射线衍射、差示扫描量热仪和金相显微镜研究了 Nb 对 M3型高速钢组织的影响。喷射成形能有效消除宏观偏析,细化组织。以 Nb 代 V,提高了 MC 型碳化物开始析出温度,大量 MC 相先于共晶反应析出,呈独立的近球形分布于晶界,同时其尺寸减小。由于消耗大量 C,抑制了共晶反应,M2 C 片层数量减少且厚度变薄,其在热变形过程中更易于分解,进一步增加了组织均匀性。低温低载荷时含铌的 M3型高速钢抗磨损性能显著优于 M3高速钢,温度升高到500℃时磨损机制逐渐以氧化磨损为主,两合金的抗磨损性能差距减小,主要原因是大量呈弥散球形分布的含铌 MC 型碳化物能有效提高高速钢的磨粒磨损抗性,而其对抗氧化性能并无明显作用。  相似文献   

3.
采用常规铸造和喷射成形工艺制备了含硅达25%(质量分数)的过共晶Al-Si合金,利用SEM(EDS)、XRD和DSC等分析方法对合金的显微组织和相熔解析出进行了分析研究.结果表明,铸态合金含有粗大块状初晶Si相和粗大针片状含铁相,而喷射成形工艺能够使二者的尺寸、形貌发生改变而有利于合金性能的提高.同时,铸态和沉积态合金中均含有基体Al、初晶Si和Al2Cu相,不同的是铸态合金中含铁相主要为δ-Al4FeSi2相,而沉积态合金中以β-Al5FeSi相为主.分析其原因主要是糊状层的存在引起沉积坯冷却速度降低而导致沉积坯中发生δ-Al4FeSi2相的转变及共晶组织增加,致使沉积态合金中β-Al5FeSi相为主要含铁相.采用DSC实验对沉积态合金在熔化和凝固过程中发生的反应进行了讨论.  相似文献   

4.
通过电渣重熔制备不同硅含量的M2高速钢铸锭(硅质量分数分别为0.3%,0.8%,1.6%和2.4%),采用光学显微镜(OM)、扫描电镜(SEM)、能谱分析(EDS)和X射线衍射(XRD)的方法研究了硅对热处理态M2高速钢中共晶碳化物的影响。研究结果表明,退火态高速钢铸锭中共晶碳化物呈连续或半连续网状分布于枝晶间,随着硅含量的增加,共晶碳化物从片层状M2C变为鱼骨状M6C。在1 165 ℃保温2.5 h的热处理过程中,片层状M2C碳化物分解为MC和M6C碳化物,在后续变形中破碎为细小的碳化物颗粒。0.8%S  相似文献   

5.
ZK60镁合金铸态显微组织分析   总被引:11,自引:2,他引:11  
作为高强度变形镁合金研究的基础工作,较系统研究了ZK60镁合金的铸态组织.光学显微分析表明,铸态组织中存在很明显的枝晶;有相当数量的共晶组织沿晶界或枝晶边界断续分布.差热分析(DSC)表明,在加热和冷却速度分别为15 K/min和10 K/min时共晶组织的熔化温度为345℃,凝固析出温度为328.7℃.x-衍射分析初步确定,在铸态ZK60镁合金中主要有α-Mg,MgZn,MgZn23种合金相.透射电子显微分析发现,共晶组织类型、组成和分布具有多样性,选区电子衍射花样标定共晶组织主要由α-Mg和MgZn两相构成.  相似文献   

6.
采用喷射沉积技术制备ZA35合金沉积坯,并对沉积坯进行固态热挤压制备ZA35合金。对此种方法制备的合金进行抗拉强度与耐蚀性检测,分析了喷射沉积对ZA35力学性能与耐蚀性的影响。试验表明:喷射沉积与热挤压制备的ZA35合金抗拉强度优于金属型铸造ZA35合金,采用喷射沉积与挤压制备的合金组织均匀,晶粒细小,断口观察发现随拉伸温度升高喷射沉积合金的断裂表现为穿晶断裂,韧性提高。在KOH介质中,喷射沉积ZA35合金与铸态ZA35合金相比,自腐蚀电位变正,腐蚀电流减小,耐蚀性增强。  相似文献   

7.
采用喷射沉积工艺制备快速凝固AlFeVSi合金薄片和沉积管坯,通过示差热分析、X射线衍射分析、金相显微组织观察、透射电镜组织观察、硬度测试等检测手段,研究了喷射沉积AlFeVSi合金快凝薄片在高温热暴露过程中的相变和组织演变规律,并分析了喷射沉积AlFeVSi合金坯组织特点。结果表明,喷射沉积AlFeVSi快凝薄片基本上为呈微胞状的过饱和α-Al固溶体。加热温度低于500℃时,在高温热暴露过程中微胞状结构发生分解,α-Al过饱和固溶体脱溶,形成α-Al Al12(Fe,V)3Si(bcc,a≈1.260 nm)弥散颗粒的分解产物,当温度高于500℃时,Al12(Fe,V)3Si颗粒粗化聚集,并以独立形核长大的方式生成θ-Al13Fe4块状相。随着热暴露温度升高,喷射沉积AlFeVSi合金薄片的硬度呈下降趋势。喷射沉积AlFeVSi坯主要由α-Al固溶体和Al12(Fe,V)3Si颗粒组成,但也存在少量含粗大片状或块状相的非快速凝固组织。  相似文献   

8.
加热温度对高速钢铸轧薄带中共晶碳化物形态的影响   总被引:1,自引:0,他引:1  
研究了退火加热温度对高速钢双辊铸轧薄带中共晶碳化物形态的影响·试验结果表明,随着加热温度的提高,铸轧薄带中的网状共晶碳化物陆续熔断,粒状碳化物逐渐增多·当加热温度达到950℃后,铸轧薄带中的网状共晶碳化物基本上被粒状碳化物所取代·用汤普森弗瑞锥其(ThompsonFriedrich)方程,对试验结果进行了分析,并得出共晶碳化物层片间距的减小为高速钢铸轧薄带中的共晶碳化物的熔断和球化提供了条件·  相似文献   

9.
基于半固态成型技术,采用一种新型工艺消除M2高速工具钢中大块的有害碳化物.为验证该工艺的可行性,通过控制变形温度(固液比)、变形方式等实验参数,利用金相显微镜和电子显微镜研究不同碳化物的形貌和分布,采用电子探针表征不同碳化物中元素分布,探讨新型工艺对合金凝固行为和组织中有害碳化物的影响.研究证明,在较高液相分数下变形,M2高速钢中大块的有害碳化物面积分数减小,有助于改善合金凝固组织;特别是两道次变形工艺中,分别在1345℃和1100℃变形25%和30%,样品中碳化物面积分数大幅降低,由铸态的14.3%降低至6.5%.  相似文献   

10.
利用Thermo-Calc软件对8Cr13MoV马氏体不锈钢的凝固过程进行计算,利用光学显微镜、扫描电子显微镜和X射线衍射分析仪对铸态组织和碳化物形貌以及类型进行观察与分析,利用Gleeble热模拟试验机测定材料的静态连续冷却转变曲线.结果表明,8Cr13MoV在平衡凝固条件下组织为铁素体和M23 C6型碳化物,而在实际的凝固条件下,组织为铁素体、马氏体、残余奥氏体、M7 C3型和M23 C6型碳化物,由于偏析导致最终组织中碳化物以M7 C3型为主,少量M23 C6以薄片或树枝状分布在晶界上.由于较高的C和Cr含量,以0.1℃·s-1的冷却速率冷却时,奥氏体也会发生马氏体转变.  相似文献   

11.
The decomposition of the coarse primary M_2C carbide in M2 high speed steel was investigated by using optical microscope,scanning electron microscope,energy dispersive spectrometer and X-ray diffraction analysis.It is indicated that the SEM observation using deeply etched samples can clearly reveal the details of the decomposition products of primary M_2C eutectic carbides.The MC is granular and M_6C is peanut-shaped in the decomposition products,and the decomposition products are found to be very small ...  相似文献   

12.
以Cahn理论和Scheil法则为基础,讨论了热变形过程对γ α相变的影响,预测了C Mn钢变形过程铁素体析出的开始温度Ar3d和Nb V钢连续冷却转变开始温度Ar3·结果表明,同样变形条件下,碳含量或锰含量越低的钢种Ar3d越高;同一成分钢种,随着变形量增大或变形速率降低Ar3d提高;随着冷却速率的增加,Ar3温度降低;变形可以提高Ar3温度·用该方法进行的计算机模拟结果和实验结果吻合良好,表明这种理论处理方法可用来模拟这种相变过程·  相似文献   

13.
This review summarizes the strengthening mechanisms of reduced activation ferritic/martensitic (RAFM) steels. High-angle grain boundaries, subgrain boundaries, nano-sized M23C6, and MX carbide precipitates effectively hinder dislocation motion and increase high-temperature strength. M23C6 carbides are easily coarsened under high temperatures, thereby weakening their ability to block dislocations. Creep properties are improved through the reduction of M23C6 carbides. Thus, the loss of strength must be compensated by other strengthening mechanisms. This review also outlines the recent progress in the development of RAFM steels. Oxide dispersion-strengthened steels prevent M23C6 precipitation by reducing C content to increase creep life and introduce a high density of nano-sized oxide precipitates to offset the reduced strength. Severe plastic deformation methods can substantially refine subgrains and MX carbides in the steel. The thermal deformation strengthening of RAFM steels mainly relies on thermo-mechanical treatment to increase the MX carbide and subgrain boundaries. This procedure increases the creep life of TMT(thermo-mechanical treatment) 9Cr–1W–0.06Ta steel by ~20 times compared with those of F82H and Eurofer 97 steels under 550°C/260 MPa.  相似文献   

14.
铬系白口铸铁中碳化物的电化学行为研究   总被引:1,自引:1,他引:0  
为研究铬系白口铸铁在腐蚀介质中的相间腐蚀机理及铬系白口铸铁中碳化物的电化学行为,配制了3种典型铬系白口铸铁,应用改进了的提取相表面富集法制备了碳化物试样,测定了共晶碳化物的腐蚀速度及其电化学行为。试验结果表明:铬系白口铸铁中共晶碳化物的极化曲线既没有活化区,也没有过钝化区,一直处于自钝化状态;M7C3型碳化物比M3C型碳化物更耐蚀,更稳定。  相似文献   

15.
The tempering stability of three Fe-Cr-Mo-W-V hot forging die steels (DM, H21, and H13) was investigated through hardness measurements and transmission electron microscopy (TEM) observations. Both dilatometer tests and TEM observations revealed that DM steel has a higher tempering stability than H21 and H13 steels because of its substantial amount of M2C (M represents metallic element) carbide precipitations. The activation energies of the M2C carbide precipitation processes in DM, H21, and H13 steels are 236.4, 212.0, and 228.9 kJ/mol, respectively. Furthermore, the results indicated that vanadium atoms both increase the activation energy and affect the evolution of M2C carbides, resulting in gradual dissolution rather than over-aging during tempering.  相似文献   

16.
高温变形GCr15连续冷却相变及显微组织分析   总被引:1,自引:0,他引:1  
为合理确定GCr15轴承钢的轧后冷却工艺,利用Gleeble1500热模拟实验机,模拟830℃终轧的变形过程,测定GCr15轴承钢的动态CCT曲线;利用光学显微镜、扫描电镜等分析了冷却速度对珠光体片层厚度和网状碳化物析出的影响规律.实验结果表明:在一定的冷却速度范围内,随着冷速的增加珠光体片层变薄,当冷却速度过大时,会产生一种粗大的类珠光体组织;当冷却速度为10℃/s左右时,可以获得细片状珠光体组织,且可有效减少网状碳化物的析出.  相似文献   

17.
含铝高速钢中奥氏体非均匀长大的机制   总被引:2,自引:0,他引:2  
M2AI和M2高速钢经一次和二次淬火后,奥氏体晶粒和未溶碳化物的定量研究表明,在高温r/f比值相同的条件下,由于淬火前原始组织的差别,可发生正常(均匀)和异常(非均匀)两类长大。根据异常粗晶形成初期的组织观察,提出了“连续-非连续”再结晶模式和“合并—推移”式的生长机制。提出了减轻或消除M2AI钢混晶的工艺原则。  相似文献   

18.
The microstructure formation processes in HK40 and HH40 alloys were investigated through JmatPro calculations and quenching performed during directional solidification. The phase transition routes of HK40 and HH40 alloys were determined as L → L + γ → L + γ + M7C3 → γ + M7C3 → γ + M7C3 + M23C6→ γ + M23C6 and L → L + δ → L + δ + γ→ L + δ + γ + M23C6 δ + γ + M23C6, respectively. The solidification mode was determined to be the austenitic mode (A mode) in HK40 alloy and the ferritic–austenitic solidification mode (FA mode) in HH40 alloy. In HK40 alloy, eutectic carbides directly precipitate in a liquid and coarsen during cooling. The primary γ dendrites grow at the 60° angle to each other. On the other hand, in HH40 alloy, residual δ forms because of the incomplete transformation from δ to γ. Cr23C6 carbide is produced in solid delta ferrite δ but not directly in liquid HH40 alloy. Because of carbide formation in the solid phase and no rapid growth of the dendrite in a non-preferential direction, HH40 alloy is more resistant to cast defect formation than HK40 alloy.  相似文献   

19.
大断面轴承钢控轧控冷工艺的模拟与分析   总被引:3,自引:0,他引:3  
利用Gleeble 1500热模拟实验机,研究了轴承钢在850℃终轧后,不同冷却速度对其显微组织结构的影响规律.采用ANSYS有限元软件,模拟了大断面轴承钢在不同工艺制度下的温度场分布.结果表明:冷却速度是影响轴承钢碳化物析出的主要因素,在850℃终轧变形后,为了抑制网状的析出,冷却速度应达到3℃/s左右为宜;轴承钢断面越大,在快速冷却过程中,表面与心部的温度差越大(最大温差约450℃),心部冷却越困难;直径为60 mm以下圆钢,通过冷却强度与冷却制度的合理匹配,可以控制心部的冷速达到3℃/s,从而抑制网状碳化物析出.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号