首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
The heterotrimeric G-protein Gs couples cell-surface receptors to the activation of adenylyl cyclases and cyclic AMP production (reviewed in refs 1, 2). RGS proteins, which act as GTPase-activating proteins (GAPs) for the G-protein alpha-subunits alpha(i) and alpha(q), lack such activity for alpha(s) (refs 3-6). But several RGS proteins inhibit cAMP production by Gs-linked receptors. Here we report that RGS2 reduces cAMP production by odorant-stimulated olfactory epithelium membranes, in which the alpha(s) family member alpha(olf) links odorant receptors to adenylyl cyclase activation. Unexpectedly, RGS2 reduces odorant-elicited cAMP production, not by acting on alpha(olf) but by inhibiting the activity of adenylyl cyclase type III, the predominant adenylyl cyclase isoform in olfactory neurons. Furthermore, whole-cell voltage clamp recordings of odorant-stimulated olfactory neurons indicate that endogenous RGS2 negatively regulates odorant-evoked intracellular signalling. These results reveal a mechanism for controlling the activities of adenylyl cyclases, which probably contributes to the ability of olfactory neurons to discriminate odours.  相似文献   

2.
Y Yoneda  K Kuriyama 《Nature》1980,285(5767):670-673
The specific binding of 3H-muscimol to synaptic membrane preparations obtained from the rate brain has been though to reflect the association of gamma-aminobutyric acid (GABA), a potential candidate as an inhibitory neurotransmitter in the mammalian central nervous system (CNS), with its synaptic receptors. Treatment of synaptic membranes with Triton X-100 significantly increases the specific binding of 3H-muscimol. Several reports also indicate the presence of endogenous substances, such as GABA, acidic protein and phosphatidylethanolamine, which inhibit Na-independent binding of 3H-GABA in the synaptic membranous fractions from the rat brain. We report here that in the supernatant obtained from Triton-treated synaptic membranes there exists a new type of endogenous inhibitor of 3H-muscimol binding which is apparently different from the inhibitory substances described previously. The new inhibitor has a low molecular weight (MW) and probably originated from neurones rather than glial cells. We have termed this endogenous inhibitor the GABA receptor binding inhibitory factor (GRIF).  相似文献   

3.
4.
5.
F Ango  L Prézeau  T Muller  J C Tu  B Xiao  P F Worley  J P Pin  J Bockaert  L Fagni 《Nature》2001,411(6840):962-965
G-protein-coupled receptors (GPCRs) transduce signals from extracellular transmitters to the inside of the cell by activating G proteins. Mutation and overexpression of these receptors have revealed that they can reach their active state even in the absence of agonist, as a result of a natural shift in the equilibrium between their inactive and active conformations. Such agonist-independent (constitutive) activity has been observed for the glutamate GPCRs (the metabotropic glutamate receptors mGluR1a and mGluR5) when they are overexpressed in heterologous cells. Here we show that in neurons, the constitutive activity of these receptors is controlled by Homer proteins, which bind directly to the receptors' carboxy-terminal intracellular domains. Disruption of this interaction by mutagenesis or antisense strategies, or expression of endogenous Homer1a (H1a), induces constitutive activity in mGluR1a or mGluR5. Our results show that these glutamate GPCRs can be directly activated by intracellular proteins as well as by agonists.  相似文献   

6.
The endogenous cannabinoid receptor agonist anandamide is a powerful vasodilator of isolated vascular preparations, but its mechanism of action is unclear. Here we show that the vasodilator response to anandamide in isolated arteries is capsaicin-sensitive and accompanied by release of calcitonin-gene-related peptide (CGRP). The selective CGRP-receptor antagonist 8-37 CGRP, but not the cannabinoid CB1 receptor blocker SR141716A, inhibited the vasodilator effect of anandamide. Other endogenous (2-arachidonylglycerol, palmitylethanolamide) and synthetic (HU 210, WIN 55,212-2, CP 55,940) CB1 and CB2 receptor agonists could not mimic the action of anandamide. The selective 'vanilloid receptor' antagonist capsazepine inhibited anandamide-induced vasodilation and release of CGRP. In patch-clamp experiments on cells expressing the cloned vanilloid receptor (VR1), anandamide induced a capsazepine-sensitive current in whole cells and isolated membrane patches. Our results indicate that anandamide induces vasodilation by activating vanilloid receptors on perivascular sensory nerves and causing release of CGRP. The vanilloid receptor may thus be another molecular target for endogenous anandamide, besides cannabinoid receptors, in the nervous and cardiovascular systems.  相似文献   

7.
In vitro stimulation of mononuclear cells from human peripheral blood with mitogens causes the release of factors (monokines and lymphokines) which possess distinct biological activities. One such factor, termed 22K, can induce production of human beta-interferon (HuIFN-beta) in cultured human fibroblasts, thereby rendering these cells resistant to virus infection. Here we report the complete purification and partial sequencing (39 N-terminal amino acids) of this factor, whose relative molecular mass was estimated by SDS-polyacrylamide gel electrophoresis to be 17,000 (17K). In addition to an antiviral effect, the pure protein exhibits several other biological activities. Most significantly, intravenous (i.v.) injection of the factor in rabbits caused fever and granulopenia at doses of 0.1-1 microgram per kg, effects which we attribute to a monokine called endogenous pyrogen (EP). In vitro, the protein was scored as positive in a LAF (lymphocyte-activating factor) assay at 0.1-1 ng ml-1. LAF and EP are considered to be members of one family of monokines, called interleukin-1 (IL-1). For this reason, and also because the amino-acid sequence of the 22K factor is at least partially homologous to a complementary DNA-derived IL-1 sequence, we postulate that the 22K factor also belongs to the IL-1 family.  相似文献   

8.
C H Heldin  B Westermark  A Wasteson 《Nature》1979,282(5737):419-420
Epidermal growth factor (EGF), which can be purified from the mouse submaxillary gland or from pregnant human urine, is a potent multiplication-stimulating factor for several types of cultured cells, including human fibroblasts and glial cells. The molecule binds with high affinity and saturation kinetics to a cell-surface receptor, is subsequently internalised and finally degraded. The binding event is accompanied by a reduction in the number of EGF receptors. This phenomenon--'receptor down-regulation'--has been demonstrated with several hormones and may be a general principle for the modulation of binding groups on the outer cell surface. Further, it has been proposed that receptor loss acts to regulate the cellular response to the binding ligand. The present study provides direct experimental support for this hypothesis. It demonstrates that down-regulation of EGF receptors on glial cells causes desensitisation of the mitogenic response of these cells to subsequent stimulation with EGF.  相似文献   

9.
Fibroblastic cultures derived from normal human tissues undergo a finite number of population doublings when serially subcultivated in vitro (see refs 1, 2 for reviews). Epidermal growth factor (EGF) serves as a mitogen for early doubling level cultures of the human fetal lung-derived cell strain, WI-38, under serum-free conditions. The ability of cells from late doubling level cultures to respond mitogenically to EGF is lost, however, despite undiminished binding of EGF throughout the replicative lifespan. The ultimate effects of EGF, that is DNA synthesis and mitosis (see ref. 4 for review), occur after a sequence of events initiated by binding of ligand to specific cellular receptors. The receptor for EGF has been characterized as a 145,000-165,000 (145 K-165 K) molecular weight doublet, and, like the receptors for platelet-derived growth factor and insulin, and the transforming proteins of certain of the RNA tumour viruses, is a tyrosine-specific protein kinase with autophosphorylating activity. Moreover, several of the cellular target molecules of tyrosine phosphorylation have been found to be substrates for two or more of these kinases. The hypothesis that tyrosine phosphorylation underlies a common mechanism of growth control prompted us to ask whether the loss of responsiveness to EGF by late doubling level WI-38 cells is accompanied by altered expression of the EGF receptor, and specifically whether changes occur in the ability of receptors from populations of cells of various in vitro ages to catalyse tyrosine autophosphorylation. We show here that autophosphorylating activity is absent from the EGF receptor of cells which have lost their mitogenic responsiveness to EGF.  相似文献   

10.
The primary role of cytokines in haemato-lymphopoiesis is thought to be the regulation of cell growth and survival. But the instructive action of cytokines in haematopoiesis has not been well addressed. Here we show that a clonogenic common lymphoid progenitor, a bone marrow-resident cell that gives rise exclusively to lymphocytes (T, B and natural killer cells), can be redirected to the myeloid lineage by stimulation through exogenously expressed interleukin (IL)-2 and GM-CSF (granulocyte/macrophage colony-stimulating factor) receptors. Analysis of mutants of the beta-chain of the IL-2 receptor revealed that the granulocyte- and monocyte-differentiation signals are triggered by different cytoplasmic domains, showing that the signalling pathway(s) responsible for these unique developmental outcomes are separable. Finally, we show that the endogenous myelomonocytic cytokine receptors for GM-CSF and macrophage colony-stimulating factor (M-CSF) are expressed at low to moderate levels on the more primitive haematopoietic stem cells, are absent on common lymphoid progenitors, and are upregulated after myeloid lineage induction by IL-2. We conclude that cytokine signalling can regulate cell-fate decisions and propose that a critical step in lymphoid commitment is downregulation of cytokine receptors that drive myeloid cell development.  相似文献   

11.
12.
Potent ulcerogenic actions of platelet-activating factor on the stomach   总被引:27,自引:0,他引:27  
A C Rosam  J L Wallace  B J Whittle 《Nature》1986,319(6048):54-56
Platelet-activating factor (PAF) is an endogenous phospholipid which has been implicated as a mediator of allergic and inflammatory processes. It is synthesized and released by neutrophils, platelets, macrophages, monocytes, basophils and endothelial cells, and is a potent platelet-aggregating agent, a vasodilator, increases vascular permeability, stimulates neutrophil aggregation and degranulation and induces release of lysosomal enzymes. A role for PAF in the hypotension associated with endotoxin shock and in necrotizing enterocolitis has recently been suggested. As there is an association between septic shock and acute gastric damage, we propose that PAF is an endogenous mediator of ulceration in the stomach. Indeed, as reported here, intravenous (i.v.) infusion of PAF to rats, at doses of 20-200 pmol per kg per min, resulted in the formation of extensive haemorrhagic erosions in the gastric mucosa. The ulcerogenic actions of PAF are not attributable solely to its hypotensive actions and were not mediated via effects on platelets or cyclooxygenase products, nor via histamine H1, H2 or alpha-adrenergic receptors. PAF is the most potent gastric ulcerogen yet described and its endogenous release may underlie or contribute to certain forms of gastric ulceration.  相似文献   

13.
A R Rees  E D Adamson  C F Graham 《Nature》1979,281(5729):309-311
Mouse teratocarcinoma stem cells (embryonal carcinoma, or EC cells) bind very small amounts of mouse epidermal growth factor (EGF) and the latter hormone seems to have no stimulatory effect on the growth of two cloned lines of EC cells. However, when EC cells are induced to differentiate into large flat endodern-like cells (END cells), EGF receptors increase in number reaching a plateau in 6 to 8 days. At 8 to 10 days after induction, END cells multiply very slowly, but when EGF is added (3 x 10(-10) M) to the medium, cell division is stimulated and a further change in morphology occurs. This letter describes the binding characteristics and numbers of the EGF receptors on EC and END cells and shows that exogenous retinoic acid increases the numbers of EGF receptors on END cells. We were unable to find endogenous competing factors produced by EC cells. Such factors could account for the lack of detectable binding of EGF on these cells. As EC cells differentiate to END cells, so the ability of the cells to form tumours is reduced. Since this change is accompanied by an increase in the number of EGF receptors there may be a relationship between these two events.  相似文献   

14.
Dopaminergic D-3 binding sites are not presynaptic autoreceptors   总被引:1,自引:0,他引:1  
S E Leff  I Creese 《Nature》1983,306(5943):586-589
Postsynaptic dopamine (DA) receptors have been classified biochemically and pharmacologically into two types: D-1 receptors mediate adenylate cyclase stimulation, demonstrating micromolar affinity for DA and butyrophenone antagonists; D-2 receptors mediate adenylate cyclase inhibition, demonstrating nanomolar affinity for DA and butyrophenone antagonists. D-1 receptors are labelled by 3H-thioxanthene antagonists, while D-2 receptors are labelled by both 3H-agonists and all 3H-antagonists. A third class of dopaminergic binding site, termed D-3, represents high-affinity 3H-agonist binding sites demonstrating low, micromolar, affinity for butyrophenones. In the rat striatum, D-3 sites were decreased 50% by 6-hydroxydopamine (6-OHDA) lesions of the nigrostriatal DA pathway, suggesting that such D-3 binding labels presynaptic DA autoreceptors on nigrostriatal terminals. However, nigrostriatal denervation produces a concomitant depletion of striatal DA. Here we demonstrate that a reserpine-induced depletion of DA produces a decrease in D-3 binding comparable to that seen with nigrostriatal denervation, independent of presynaptic terminal degeneration. This loss in binding, or that caused by 6-OHDA lesions, is recovered by preincubating the striatal membranes with DA or with the supernatant from control striatal membrane preparations. We therefore suggest that the loss of D-3 binding following 6-OHDA lesions results from the depletion of endogenous DA rather than the degeneration of terminals and their putatively associated autoreceptors.  相似文献   

15.
Stimulation of growth factor receptors with tyrosine kinase activity is followed by rapid receptor dimerization, tyrosine autophosphorylation and phosphorylation of signalling molecules such as phospholipase C gamma (PLC gamma) and the ras GTPase-activating protein. PLC gamma and GTPase-activating protein bind to specific tyrosine-phosphorylated regions in growth factor receptors through their src-homologous SH2 domains. Growth factor-induced tyrosine phosphorylation of PLC gamma is essential for stimulation of phosphatidylinositol hydrolysis in vitro and in vivo. We have shown that a short phosphorylated peptide containing tyrosine at position 766 from a conserved region of the fibroblast growth factor (FGF) receptor is a binding site for the SH2 domain of PLC gamma (ref. 8). Here we show that an FGF receptor point mutant in which Tyr 766 is replaced by a phenylalanine residue (Y766F) is unable to associate with and tyrosine-phosphorylate PLC gamma or to stimulate hydrolysis of phosphatidylinositol. Nevertheless, the Y766F FGF receptor mutant can be autophosphorylated, and can phosphorylate several cellular proteins and stimulate DNA synthesis. Our data show that phosphorylation of the conserved Tyr 766 of the FGF receptor is essential for phosphorylation of PLC gamma and for hydrolysis of phosphatidylinositol, but that elimination of this hydrolysis does not affect FGF-induced mitogenesis.  相似文献   

16.
Neurotrophin-evoked rapid excitation through TrkB receptors.   总被引:27,自引:0,他引:27  
K W Kafitz  C R Rose  H Thoenen  A Konnerth 《Nature》1999,401(6756):918-921
Neurotrophins are a family of structurally related proteins that regulate the survival, differentiation and maintenance of function of different populations of peripheral and central neurons. They are also essential for modulating activity-dependent neuronal plasticity. Here we show that neurotrophins elicit action potentials in central neurons. Even at low concentrations, brain-derived neurotrophic factor (BDNF) excited neurons in the hippocampus, cortex and cerebellum. We found that BDNF and neurotrophin-4/5 depolarized neurons just as rapidly as the neurotransmitter glutamate, even at a more than thousand-fold lower concentration. Neurotrophin-3 produced much smaller responses, and nerve growth factor was ineffective. The neurotrophin-induced depolarization resulted from the activation of a sodium ion conductance which was reversibly blocked by K-252a, a protein kinase blocker which prefers tyrosine kinase Trk receptors. Our results demonstrate a very rapid excitatory action of neurotrophins, placing them among the most potent endogenous neuro-excitants in the mammalian central nervous system described so far.  相似文献   

17.
Plasmacytoid dendritic cells (pDCs) sense viral and microbial DNA through endosomal Toll-like receptors to produce type 1 interferons. pDCs do not normally respond to self-DNA, but this restriction seems to break down in human autoimmune disease by an as yet poorly understood mechanism. Here we identify the antimicrobial peptide LL37 (also known as CAMP) as the key factor that mediates pDC activation in psoriasis, a common autoimmune disease of the skin. LL37 converts inert self-DNA into a potent trigger of interferon production by binding the DNA to form aggregated and condensed structures that are delivered to and retained within early endocytic compartments in pDCs to trigger Toll-like receptor 9. Thus, our data uncover a fundamental role of an endogenous antimicrobial peptide in breaking innate tolerance to self-DNA and suggest that this pathway may drive autoimmunity in psoriasis.  相似文献   

18.
19.
D S Baskin  Y Hosobuchi  H H Loh  N M Lee 《Nature》1984,312(5994):551-552
Since the discovery of opiate receptors in the central nervous system (CNS), it has become apparent that endogenous opiate ligands are involved in CNS function. Most attention has focused on their role in modulating pain, but they have also been implicated in various physiological functions and in disease states. We are concerned with evidence that endogenous opioid peptides may also contribute to the neurological deficits arising from cerebral ischaemia. Dynorphin, which is widely distributed in the brain and pituitary, has been reported to produce unusual motor and behavioural effects and may act as a regulatory neuropeptide, not as a classical opiate agonist or antagonist. We have therefore administered to cats in which the right middle cerebral artery had been occluded both dynorphin (1-13) and analogue and control materials. We find that dynorphin (1-13) prolongs survival.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号