首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neurons in medial prefrontal cortex signal memory for fear extinction   总被引:24,自引:0,他引:24  
Milad MR  Quirk GJ 《Nature》2002,420(6911):70-74
Conditioned fear responses to a tone previously paired with a shock diminish if the tone is repeatedly presented without the shock, a process known as extinction. Since Pavlov it has been hypothesized that extinction does not erase conditioning, but forms a new memory. Destruction of the ventral medial prefrontal cortex, which consists of infralimbic and prelimbic cortices, blocks recall of fear extinction, indicating that medial prefrontal cortex might store long-term extinction memory. Here we show that infralimbic neurons recorded during fear conditioning and extinction fire to the tone only when rats are recalling extinction on the following day. Rats that froze the least showed the greatest increase in infralimbic tone responses. We also show that conditioned tones paired with brief electrical stimulation of infralimbic cortex elicit low freezing in rats that had not been extinguished. Thus, stimulation resembling extinction-induced infralimbic tone responses is able to simulate extinction memory. We suggest that consolidation of extinction learning potentiates infralimbic activity, which inhibits fear during subsequent encounters with fear stimuli.  相似文献   

2.
The central amygdala (CEA), a nucleus predominantly composed of GABAergic inhibitory neurons, is essential for fear conditioning. How the acquisition and expression of conditioned fear are encoded within CEA inhibitory circuits is not understood. Using in vivo electrophysiological, optogenetic and pharmacological approaches in mice, we show that neuronal activity in the lateral subdivision of the central amygdala (CEl) is required for fear acquisition, whereas conditioned fear responses are driven by output neurons in the medial subdivision (CEm). Functional circuit analysis revealed that inhibitory CEA microcircuits are highly organized and that cell-type-specific plasticity of phasic and tonic activity in the CEl to CEm pathway may gate fear expression and regulate fear generalization. Our results define the functional architecture of CEA microcircuits and their role in the acquisition and regulation of conditioned fear behaviour.  相似文献   

3.
Switching on and off fear by distinct neuronal circuits   总被引:1,自引:0,他引:1  
Herry C  Ciocchi S  Senn V  Demmou L  Müller C  Lüthi A 《Nature》2008,454(7204):600-606
Switching between exploratory and defensive behaviour is fundamental to survival of many animals, but how this transition is achieved by specific neuronal circuits is not known. Here, using the converse behavioural states of fear extinction and its context-dependent renewal as a model in mice, we show that bi-directional transitions between states of high and low fear are triggered by a rapid switch in the balance of activity between two distinct populations of basal amygdala neurons. These two populations are integrated into discrete neuronal circuits differentially connected with the hippocampus and the medial prefrontal cortex. Targeted and reversible neuronal inactivation of the basal amygdala prevents behavioural changes without affecting memory or expression of behaviour. Our findings indicate that switching between distinct behavioural states can be triggered by selective activation of specific neuronal circuits integrating sensory and contextual information. These observations provide a new framework for understanding context-dependent changes of fear behaviour.  相似文献   

4.
The role of different amygdala nuclei (neuroanatomical subdivisions) in processing Pavlovian conditioned fear has been studied extensively, but the function of the heterogeneous neuronal subtypes within these nuclei remains poorly understood. Here we use molecular genetic approaches to map the functional connectivity of a subpopulation of GABA-containing neurons, located in the lateral subdivision of the central amygdala (CEl), which express protein kinase C-δ (PKC-δ). Channelrhodopsin-2-assisted circuit mapping in amygdala slices and cell-specific viral tracing indicate that PKC-δ(+) neurons inhibit output neurons in the medial central amygdala (CEm), and also make reciprocal inhibitory synapses with PKC-δ(-) neurons in CEl. Electrical silencing of PKC-δ(+) neurons in vivo suggests that they correspond to physiologically identified units that are inhibited by the conditioned stimulus, called CEl(off) units. This correspondence, together with behavioural data, defines an inhibitory microcircuit in CEl that gates CEm output to control the level of conditioned freezing.  相似文献   

5.
Congruent findings from studies of fear learning in animals and humans indicate that research on the circuits mediating fear constitutes our best hope of understanding human anxiety disorders. In mammals, repeated presentations of a conditioned stimulus that was previously paired to a noxious stimulus leads to the gradual disappearance of conditioned fear responses. Although much evidence suggests that this extinction process depends on plastic events in the amygdala, the underlying mechanisms remain unclear. Intercalated (ITC) amygdala neurons constitute probable mediators of extinction because they receive information about the conditioned stimulus from the basolateral amygdala (BLA), and contribute inhibitory projections to the central nucleus (CEA), the main output station of the amygdala for conditioned fear responses. Thus, after extinction training, ITC cells could reduce the impact of conditioned-stimulus-related BLA inputs to the CEA by means of feed-forward inhibition. Here we test the hypothesis that ITC neurons mediate extinction by lesioning them with a toxin that selectively targets cells expressing micro-opioid receptors (microORs). Electron microscopic observations revealed that the incidence of microOR-immunoreactive synapses is much higher in ITC cell clusters than in the BLA or CEA and that microORs typically have a post-synaptic location in ITC cells. In keeping with this, bilateral infusions of the microOR agonist dermorphin conjugated to the toxin saporin in the vicinity of ITC neurons caused a 34% reduction in the number of ITC cells but no significant cell loss in surrounding nuclei. Moreover, ITC lesions caused a marked deficit in the expression of extinction that correlated negatively with the number of surviving ITC neurons but not CEA cells. Because ITC cells exhibit an unusual pattern of receptor expression, these findings open new avenues for the treatment of anxiety disorders.  相似文献   

6.
研究了大鼠在条件性恐惧视觉建立过程中杏仁核对恐惧视觉信息的编码。首先,设计两种不同拓扑结构("十"和"O")图形,利用巴普洛夫条件反射原理建立大鼠条件性恐惧视觉联结,采用多通道神经信号采集系统采集恐惧视觉建立过程中的杏仁核神经元集群响应信号。然后,对神经元响应信号进行有效响应区间的自适应选取,分别采用神经元集群发放频率和集群熵研究条件性恐惧视觉建立的不同阶段杏仁核的集群编码,发现神经元集群在条件性恐惧建立后发放率、熵均有显著增加。最后,采用支持向量机构建条件性恐惧建立过程中不同恐惧水平的分类模型,验证两种编码的效果。结果表明集群熵编码包含更多的非线性信息和时空整合信息,能更有效地实现恐惧视觉建立过程中视觉信息的"恐惧"水平的表征,由此推测大鼠杏仁核神经核团是以集群的方式对恐惧信息进行编码的。  相似文献   

7.
Both conditioned responses (CRs) and sensitized behaviors induced by addictive drugs are considered to reflect drug-seeking motivation. Based on an excitatory conditioning model of behavioral sensitization, this work hypothesizes that conditioned locomotor activity and locomotor sensitization concomitantly occur using different drug treatment regimens. In the present study, conditioned locomotor activity and sensitized locomotion and stereotypy are assessed with pretreatment of two doses of morphine in a familiar or novel environment. When rats are trained with morphine (3 or 5 mg/kg) in an environment to which the animals are habituated, a CR but not contextual sensitization is induced when tested after 1 week of abstinence. When rats receive the 5 mg/kg dose of morphine immediately after placement into a novel environment, the same results are obtained, but when the drug dose is decreased to 3 mg/kg, both the CR and contextual sensitization are observed. Therefore, the sensitized behaviors, rather than the CR produced by morphine pretreatment, appear to be dependent on the drug treatment regimen and environmental novelty, suggesting that different mechanisms may be involved in the expression of the CR and contextual sensitization.  相似文献   

8.
疼痛是一种不愉快的感觉和情绪体验, 伴随有强烈的负性情绪(如厌恶、恐惧、焦虑等)。 杏仁核作为边缘系统的皮质下中枢,在情绪反应中具有重要作用。我们的研究表明杏仁核在疼痛调制,特别是疼痛情绪反应中起关键作用。本文综述了杏仁核在疼痛及疼痛引起的焦虑行为和认知功能障碍中的作用。  相似文献   

9.
NMDA receptor (NMDA-R) in the amygdala complex is critical for both long-term potentiation (LTP) and formation of conditioned fear memory. It is reported that activation of β-adrenoceptors (β-AR) in the amygdala facilitates LTP and enhances memory consolidation. The present study examined the regulatory effect of β-AR activation on NMDA-R mediated current in pyramidal cells of the basolateral nucleus of amygdala (BLA), using whole-cell recording technique. Bath application of the β-AR agonist isoproterenol enhanced NMDA-induced current, and this facilitatory effect was blocked by co-administered propranolol, a β-AR antagonist. The facilitatory effect of isoproterenol on NMDA-induced current could not be induced when the protein kinase A (PKA) inhibitor Rp-cAMPs was added in electrode internal solution.The present results suggest that β-AR activation in the BLA could modulate NMDA-R activity directly and positively, probably via PKA.  相似文献   

10.
A specific memory is thought to be encoded by a sparse population of neurons. These neurons can be tagged during learning for subsequent identification and manipulation. Moreover, their ablation or inactivation results in reduced memory expression, suggesting their necessity in mnemonic processes. However, the question of sufficiency remains: it is unclear whether it is possible to elicit the behavioural output of a specific memory by directly activating a population of neurons that was active during learning. Here we show in mice that optogenetic reactivation of hippocampal neurons activated during fear conditioning is sufficient to induce freezing behaviour. We labelled a population of hippocampal dentate gyrus neurons activated during fear learning with channelrhodopsin-2 (ChR2) and later optically reactivated these neurons in a different context. The mice showed increased freezing only upon light stimulation, indicating light-induced fear memory recall. This freezing was not detected in non-fear-conditioned mice expressing ChR2 in a similar proportion of cells, nor in fear-conditioned mice with cells labelled by enhanced yellow fluorescent protein instead of ChR2. Finally, activation of cells labelled in a context not associated with fear did not evoke freezing in mice that were previously fear conditioned in a different context, suggesting that light-induced fear memory recall is context specific. Together, our findings indicate that activating a sparse but specific ensemble of hippocampal neurons that contribute to a memory engram is sufficient for the recall of that memory. Moreover, our experimental approach offers a general method of mapping cellular populations bearing memory engrams.  相似文献   

11.
Rosenkranz JA  Grace AA 《Nature》2002,417(6886):282-287
Pavlovian conditioning results when an innocuous stimulus, such as an odour, is paired with a behaviourally relevant stimulus, such as a foot-shock, so that eventually the former stimulus alone will elicit the behavioural response of the latter. The lateral nucleus of the amygdala (LAT) is necessary for the emotional memory formation in this paradigm. Enhanced neuronal firing in LAT to conditioned stimuli emerge in parallel with the behavioural changes and are dependent on local dopamine. To study the changes in neuronal excitability and synaptic drive that contribute to the pavlovian conditioning process, here we used in vivo intracellular recordings to examine LAT neurons during pavlovian conditioning in rats. We found that repeated pairings of an odour with a foot-shock resulted in enhanced post-synaptic potential (PSP) responses to the odour and increased neuronal excitability. However, a non-paired odour displayed PSP decrement. The dopamine antagonist haloperidol blocked the PSP enhancement and associated increased neuronal excitability, without reversing previous conditioning. These results demonstrate that conditioning and habituation processes produce opposite effects on LAT neurons and that dopamine is important in these events, consistent with its role in emotional memory formation.  相似文献   

12.
Jasmin L  Rabkin SD  Granato A  Boudah A  Ohara PT 《Nature》2003,424(6946):316-320
It is known that pain perception can be altered by mood, attention and cognition, or by direct stimulation of the cerebral cortex, but we know little of the neural mechanisms underlying the cortical modulation of pain. One of the few cortical areas consistently activated by painful stimuli is the rostral agranular insular cortex (RAIC) where, as in other parts of the cortex, the neurotransmitter gamma-aminobutyric acid (GABA) robustly inhibits neuronal activity. Here we show that changes in GABA neurotransmission in the RAIC can raise or lower the pain threshold--producing analgesia or hyperalgesia, respectively--in freely moving rats. Locally increasing GABA, by using an enzyme inhibitor or gene transfer mediated by a viral vector, produces lasting analgesia by enhancing the descending inhibition of spinal nociceptive neurons. Selectively activating GABA(B)-receptor-bearing RAIC neurons produces hyperalgesia through projections to the amygdala, an area involved in pain and fear. Whereas most studies focus on the role of the cerebral cortex as the end point of nociceptive processing, we suggest that cerebral cortex activity can change the set-point of pain threshold in a top-down manner.  相似文献   

13.
Lai CS  Franke TF  Gan WB 《Nature》2012,483(7387):87-91
It is generally believed that fear extinction is a form of new learning that inhibits rather than erases previously acquired fear memories. Although this view has gained much support from behavioural and electrophysiological studies, the hypothesis that extinction causes the partial erasure of fear memories remains viable. Using transcranial two-photon microscopy, we investigated how neural circuits are modified by fear learning and extinction by examining the formation and elimination of postsynaptic dendritic spines of layer-V pyramidal neurons in the mouse frontal association cortex. Here we show that fear conditioning by pairing an auditory cue with a footshock increases the rate of spine elimination. By contrast, fear extinction by repeated presentation of the same auditory cue without a footshock increases the rate of spine formation. The degrees of spine remodelling induced by fear conditioning and extinction strongly correlate with the expression and extinction of conditioned fear responses, respectively. Notably, spine elimination and formation induced by fear conditioning and extinction occur on the same dendritic branches in a cue- and location-specific manner: cue-specific extinction causes formation of dendritic spines within a distance of two micrometres from spines that were eliminated after fear conditioning. Furthermore, reconditioning preferentially induces elimination of dendritic spines that were formed after extinction. Thus, within vastly complex neuronal networks, fear conditioning, extinction and reconditioning lead to opposing changes at the level of individual synapses. These findings also suggest that fear memory traces are partially erased after extinction.  相似文献   

14.
Medina JF  Nores WL  Mauk MD 《Nature》2002,416(6878):330-333
A fundamental tenet of cerebellar learning theories asserts that climbing fibre afferents from the inferior olive provide a teaching signal that promotes the gradual adaptation of movements. Data from several forms of motor learning provide support for this tenet. In pavlovian eyelid conditioning, for example, where a tone is repeatedly paired with a reinforcing unconditioned stimulus like periorbital stimulation, the unconditioned stimulus promotes acquisition of conditioned eyelid responses by activating climbing fibres. Climbing fibre activity elicited by an unconditioned stimulus is inhibited during the expression of conditioned responses-consistent with the inhibitory projection from the cerebellum to inferior olive. Here, we show that inhibition of climbing fibres serves as a teaching signal for extinction, where learning not to respond is signalled by presenting a tone without the unconditioned stimulus. We used reversible infusion of synaptic receptor antagonists to show that blocking inhibitory input to the climbing fibres prevents extinction of the conditioned response, whereas blocking excitatory input induces extinction. These results, combined with analysis of climbing fibre activity in a computer simulation of the cerebellar-olivary system, suggest that transient inhibition of climbing fibres below their background level is the signal that drives extinction.  相似文献   

15.
Paton JJ  Belova MA  Morrison SE  Salzman CD 《Nature》2006,439(7078):865-870
Visual stimuli can acquire positive or negative value through their association with rewards and punishments, a process called reinforcement learning. Although we now know a great deal about how the brain analyses visual information, we know little about how visual representations become linked with values. To study this process, we turned to the amygdala, a brain structure implicated in reinforcement learning. We recorded the activity of individual amygdala neurons in monkeys while abstract images acquired either positive or negative value through conditioning. After monkeys had learned the initial associations, we reversed image value assignments. We examined neural responses in relation to these reversals in order to estimate the relative contribution to neural activity of the sensory properties of images and their conditioned values. Here we show that changes in the values of images modulate neural activity, and that this modulation occurs rapidly enough to account for, and correlates with, monkeys' learning. Furthermore, distinct populations of neurons encode the positive and negative values of visual stimuli. Behavioural and physiological responses to visual stimuli may therefore be based in part on the plastic representation of value provided by the amygdala.  相似文献   

16.
Ten years ago, we reported that SM, a patient with rare bilateral amygdala damage, showed an intriguing impairment in her ability to recognize fear from facial expressions. Since then, the importance of the amygdala in processing information about facial emotions has been borne out by a number of lesion and functional imaging studies. Yet the mechanism by which amygdala damage compromises fear recognition has not been identified. Returning to patient SM, we now show that her impairment stems from an inability to make normal use of information from the eye region of faces when judging emotions, a defect we trace to a lack of spontaneous fixations on the eyes during free viewing of faces. Although SM fails to look normally at the eye region in all facial expressions, her selective impairment in recognizing fear is explained by the fact that the eyes are the most important feature for identifying this emotion. Notably, SM's recognition of fearful faces became entirely normal when she was instructed explicitly to look at the eyes. This finding provides a mechanism to explain the amygdala's role in fear recognition, and points to new approaches for the possible rehabilitation of patients with defective emotion perception.  相似文献   

17.
A minority of individuals experiencing traumatic events develop anxiety disorders. The reason for the lack of correspondence between the prevalence of exposure to psychological trauma and the development of anxiety is unknown. Extracellular proteolysis contributes to fear-associated responses by facilitating neuronal plasticity at the neuron-matrix interface. Here we show in mice that the serine protease neuropsin is critical for stress-related plasticity in the amygdala by regulating the dynamics of the EphB2-NMDA-receptor interaction, the expression of Fkbp5 and anxiety-like behaviour. Stress results in neuropsin-dependent cleavage of EphB2 in the amygdala causing dissociation of EphB2 from the NR1 subunit of the NMDA receptor and promoting membrane turnover of EphB2 receptors. Dynamic EphB2-NR1 interaction enhances NMDA receptor current, induces Fkbp5 gene expression and enhances behavioural signatures of anxiety. On stress, neuropsin-deficient mice do not show EphB2 cleavage and its dissociation from NR1 resulting in a static EphB2-NR1 interaction, attenuated induction of the Fkbp5 gene and low anxiety. The behavioural response to stress can be restored by intra-amygdala injection of neuropsin into neuropsin-deficient mice and disrupted by the injection of either anti-EphB2 antibodies or silencing the Fkbp5 gene in the amygdala of wild-type mice. Our findings establish a novel neuronal pathway linking stress-induced proteolysis of EphB2 in the amygdala to anxiety.  相似文献   

18.
采用在体细胞外单细胞记录方法,研究电刺激杏仁外侧核对调频声所诱发的听皮层神经元反应的影响.实验在34只乌拉坦麻醉的SD大鼠上进行,在皮层41区记录了113个对调频声有反应的细胞电活动.观察发现,这些神经元对调频声刺激的反应可分为ON反应,OFF反应,ON-OFF反应,持续性反应和给声抑制反应几种类型.在观察对其中42个神经元的声反应时给予了杏仁外侧核电刺激,其中22%的神经元反应被易化,48%的神经元反应受到了抑制,另外30%神经元的声反应未受杏仁外侧核刺激的影响.这些影响进一步表明,杏仁复合体可在皮层水平参与听觉上传信息的处理,包括听觉信息的加工与整合.同时也表明杏仁核在上传听觉信息的筛选中可能具有重要的作用.  相似文献   

19.
M Dragunow  H A Robertson 《Nature》1987,329(6138):441-442
Alterations in neuronal gene expression have been proposed to account for permanent changes in brain function such as learning and memory. In particular, it has been suggested that protooncogenes such as c-fos may be rapidly induced in conditions that lead to neuronal plasticity and evoke permanent changes in the expression of effector genes. Concentrations of the c-fos proto-oncogene increase rapidly following depolarization-induced calcium influx in non-dividing neuronally differentiated PC 12 cells. Recently, the presence and induction of c-fos in the adult brain and spinal cord has been observed. Here we report that electrically-induced seizure activity, which leads to a permanent increase in the response of the brain to future seizures (kindling), rapidly and transiently increases c-fos protein-like immunoreactivity in the nuclei of granule cells in the rat dentate gyrus. These results suggest that c-fos protein is present within the nuclei of adult mammalian neurons, and could be involved in plastic changes in the nervous system associated with seizure activity.  相似文献   

20.
Burke KA  Franz TM  Miller DN  Schoenbaum G 《Nature》2008,454(7202):340-344
Cues that reliably predict rewards trigger the thoughts and emotions normally evoked by those rewards. Humans and other animals will work, often quite hard, for these cues. This is termed conditioned reinforcement. The ability to use conditioned reinforcers to guide our behaviour is normally beneficial; however, it can go awry. For example, corporate icons, such as McDonald's Golden Arches, influence consumer behaviour in powerful and sometimes surprising ways, and drug-associated cues trigger relapse to drug seeking in addicts and animals exposed to addictive drugs, even after abstinence or extinction. Yet, despite their prevalence, it is not known how conditioned reinforcers control human or other animal behaviour. One possibility is that they act through the use of the specific rewards they predict; alternatively, they could control behaviour directly by activating emotions that are independent of any specific reward. In other words, the Golden Arches may drive business because they evoke thoughts of hamburgers and fries, or instead, may be effective because they also evoke feelings of hunger or happiness. Moreover, different brain circuits could support conditioned reinforcement mediated by thoughts of specific outcomes versus more general affective information. Here we have attempted to address these questions in rats. Rats were trained to learn that different cues predicted different rewards using specialized conditioning procedures that controlled whether the cues evoked thoughts of specific outcomes or general affective representations common to different outcomes. Subsequently, these rats were given the opportunity to press levers to obtain short and otherwise unrewarded presentations of these cues. We found that rats were willing to work for cues that evoked either outcome-specific or general affective representations. Furthermore the orbitofrontal cortex, a prefrontal region important for adaptive decision-making, was critical for the former but not for the latter form of conditioned reinforcement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号