首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 93 毫秒
1.
为了揭示错位Rushton桨的混合机理,采用计算流体动力学方法,对层流和湍流水动力学特性进行了研究.首先通过与文献中实验结果的比较,验证了所建数值模型及模拟方法的可靠性,然后重点分析了错位桨搅拌槽内的尾涡、流场和搅拌功耗.结果表明:与标准Rushton桨相比,相同转速时,错位桨能减小尾涡尺寸,降低搅拌功耗,而且桨叶宽度越小越有利,但过低的桨叶宽度不利于增大流体速度及速度分布的均匀程度.相同搅拌功耗时,桨叶宽度为3 D/20和D/5(D为搅拌桨直径)时错位桨的搅拌效果明显优于标准搅拌桨,两者对流体速度提高的幅度相当,但桨叶宽度为3 D/20时的尾涡尺寸小,故为推荐桨叶宽度.  相似文献   

2.
采用粒子图像测速技术 (PIV),对直径为0.19 m的三层组合桨 (HEDT+2WH) 搅拌槽 (直径为0.48 m) 内的流场进行了实验研究,并利用标准 k-ε 模型对相应的流动特性进行了数值模拟。实验结果表明:通过改变层间距、顶层桨的浸没深度及上两层桨的操作方式可以得到4种不同流型,每种流型内循环结构的数目各不相同;上两层桨下压式操作时,流场的循环结构最少,只有两个;高速区和高能量区的分布相同,都位于各个桨叶的射流区内,且底桨射流区内的速度值和湍流动能值都大于上两层桨。模拟结果表明:标准 k-ε 模型对流场的预测较为准确,但对于有5个循环结构的流型模拟误差较大;湍流动能分布型式的模拟值与PIV实验结果吻合较好,但数值偏低,表明标准 k-ε 模型在预测复杂流型时需要改进;功率准数的模拟值与实验值基本一致。  相似文献   

3.
以NaCl颗粒在水中的溶解为例,对湍流状态下周期性变速旋转的(改变桨叶转向或速度大小,分别称为周期性换向搅拌和周期性依时搅拌)Rushton桨搅拌槽内的混合特性进行了实验研究,并与稳速搅拌进行了对比。实验过程中测量了不同搅拌模式、不同桨叶安装高度时颗粒的溶解时间,结果证明,搅拌槽底部的流型对NaCl的溶解有重要影响;桨叶安装高度对溶解速度的影响不大,周期性依时搅拌时的溶解时间比稳速搅拌时稍短,而周期性换向搅拌则能明显加快溶解速度,提高混合效率。  相似文献   

4.
采用颗粒成像测速仪(PIV),实验测定了相同功率下两种不同叶片长度的六直叶涡轮桨(RT桨)的流动场,分析了叶片长度对液相速率、湍流动能和尾涡特性的影响规律,并研究了桨叶离底距离对尾涡特性的影响。结果表明,径向速率分布差别不大,而长桨叶的轴向速率大于短桨叶,最大相差达40%。对于湍流动能,二者在近桨叶区数值相近,但在远桨叶区长叶桨较短叶桨的湍动要强,最大差值30%;对于尾涡特性,上下尾涡发展轨迹、涡量大小是不对称的,下尾涡较上尾涡发展稍快,且涡量较大,涡量大20%左右。  相似文献   

5.
为增强搅拌反应器混合性能,本文基于仿生学思想,设计了一种鲸尾型搅拌桨,即WTT搅拌桨(Whale tail turbine),运用2D-PIV设备进行流场研究.结果表明:WT T搅拌桨相比RT(Rushton turbine)搅拌桨,可以提高流体的最大径向速度以及搅拌罐下部流体的轴向速度,而且远离桨叶时,轴向速度的提高...  相似文献   

6.
组合桨层间距对搅拌槽内流动特性的影响   总被引:2,自引:0,他引:2  
采用粒子图像测速技术(PIV)对三层组合桨(HEDT+2WHU)搅拌槽(槽径0.476m)内的流动特性进行了研究,在搅拌转速、顶桨浸没深度和顶层桨高度不变的情况下,得到了中层桨位置的变化对搅拌槽内的流型、相位解析速度场和湍流动能的影响规律。结果表明,中层桨位置的改变对搅拌槽上部区域流体的流动特性影响显著,而对搅拌槽下部区域流体的流动特性产生影响较小;随中层桨位置降低,槽上部液面处反向回流区逐步缩小直至消失,中、顶层桨合并轴向流断裂,底桨上涡环作用范围不断压缩;对于相位解析速度场,较之中层桨尾涡几乎没有变化,顶桨尾涡的发展由极其微弱逐渐清晰,底桨尾涡则提前了10°相位出现;对于湍流动能分布,中、上层桨逐渐趋向于类似两层桨单独作用,底、中层桨间整体湍流动能增大。  相似文献   

7.
利用滑移网格法计算了六直叶Rushton涡轮搅拌设备内的流场。考察了计算流体力学(CFD)模拟搅拌设备流场的预测能力,分析了搅拌桨叶端及附近区域的流动行为。结果表明:CFD计算的时均速度与实验结果一致,CFD技术与实验手段可相互补充;搅拌桨叶片端部的速度分布并非关于叶片高度的中心位置严格对称,搅拌设备的流场结构并非完全由搅拌桨的行为决定;六直叶Rushton涡轮叶端附近区域最大径向速度点与最大切向速度点不在同一个位置,径向速度在叶端附近区域有一个流动发展的过程。  相似文献   

8.
斜叶涡轮搅拌槽流动场数值研究   总被引:11,自引:0,他引:11  
利用kε湍流模型模拟了斜四叶涡轮搅拌槽内不同条件下宏观流动场, 研究了搅拌桨与搅拌槽直径比( D/ DT) 、桨叶离槽底距离(C) 对搅拌槽内宏观流动场的影响。数值模拟结果表明, 桨叶离槽底距离与槽径之比较小( C/ DT=0-33)时, 叶轮区域轴向流动较强, 在整个rz 断面形成一个整体循环。随着桨叶离槽底距离增加, 叶轮区径向流动增强, 当C/ DT= 0-5 时, 在搅拌桨下方区域形成二次循环区。搅拌桨与搅拌槽直径比较小时( D/DT= 0-33) , 挡板前后宏观流动场差别很大, 在挡板后面区域, 流体在桨叶安装位置高度附近转向轴心流动, 槽体上半部区域形成二次循环区域, 且二次循环区域内流体以向上流动为主。  相似文献   

9.
针对不同搅拌结构形式的新型旋转热管生物反应器内的流动特性进行数值模拟。建立旋转热管生物反应器的数值模型,将多重参考系法(MRF)与滑移网格法(SM)相结合,选用标准k-ε湍流模型模拟计算反应器内的速度分布,并对作为搅拌结构的热管蒸发段上桨叶的倾斜角度(α)在0°、15°、30°和45°时的搅拌功率和混合时间进行计算。结果表明:在搅拌结构中,有热管蒸发段桨叶反应器的轴向形成了3个漩涡区,轴向平均流速相对较高,并且靠近自由液面附近的流速也较大。随着桨叶倾斜角度的增加,反应器液面附近速度减小,搅拌功率减小,混合时间变长。  相似文献   

10.
针对50 L发酵罐搅拌器组合选择类型复杂多变的问题,设计4种不同桨叶组合的三层搅拌桨模型,运用CFD软件对设计的4种组合桨发酵罐进行气液两相流数值模拟。通过对发酵罐中有无通气进行比较,研究通气对罐内流场的影响,并对通气后不同桨叶组合下的液相速度云图、搅拌功耗、体积传质系数以及气相体积分数进行分析,选取混合效果最好的桨叶组合。结果表明:通气会使罐内流场的轴向速度增强;通气条件下不同桨叶组合产生的流场特性会有所不同,上下层桨叶为径向流桨叶,中层桨叶为轴向流桨叶的桨叶组合所形成的流场速度分布更加均匀,能为发酵罐在搅拌过程中物质的扩散与混合提供更好的条件;不同的桨叶组合会产生不同的KLa值;下桨叶选择六直叶圆盘涡轮桨的桨叶组合其气体分布更加均匀;在搅拌功率方面,搅拌组合B功耗最高,搅拌组合D功耗相对较低,且在三个轴向流桨叶中螺旋桨功耗最低,综合分析选取组合D为最优桨叶组合。研究结果可为气液两相流发酵罐的设计与选择提供理论依据。  相似文献   

11.
涡轮桨搅拌槽内流场的数字PIV测量   总被引:15,自引:0,他引:15  
为研究机械搅拌槽内的流场特性,用数字粒子图像测速仪对桨叶直径与搅拌槽直径比约为0.5的涡轮桨搅拌槽内流场进行了测量。实验发现测量值随时间的随机脉动非常剧烈,为准确获取时均速度场,确立了多采样点平均的实验方法并进而找出了最佳采样点数。在获取的时均速度场的基础上计算了流量准数、涡量和湍动能的分布,考察了转速和测量面位置对流场的影响。结果表明:湍动能分布不均匀,在叶轮区较高,而在主体区较小;由于自由液面的作用,湍动能在高度方向上呈非对称性分布,并且这种非对称性随转速的变化而变化。  相似文献   

12.
利用激光粒子图像速度场测量技术对环型多孔式喷嘴的加湿与不加湿旋流扩散燃烧流场进行了实验研究,分析了湿度对旋流扩散燃烧流场的影响.结果表明,随着燃烧流场湿度增大,火焰明显变暗,火焰宽度和高度增大,回流区漩涡与燃烧器出口和喷嘴轴线间的距离减小,轴线上最大回流速度降低,轴线最大回流速度点与喷嘴的距离增加,逆流区宽度和喷嘴旋转射流扩展角减小,流场轴向出口的不均匀系数增大.  相似文献   

13.
絮凝搅拌器内部流场特性数值模拟   总被引:1,自引:0,他引:1  
在气液交界面形态对比和LDV试验验证基础上,基于CFX 侵入式实体模型,应用标准k-ε湍流模型对容积为1 L的絮凝搅拌器内部流场特性进行了数值研究.结果表明:下循环区的流体运动速度和速度梯度较大;搅拌强度增加,速度梯度增大;转速对叶轮附近切向速度梯度影响最大,该区域切向速度梯度值与其他区域最大相差两个数量级;下循环区湍流耗散率、湍流动能和涡流黏度较高;在研究转速范围内,转子转速对湍流动能影响相对较大,对涡流黏度影响相对较小.  相似文献   

14.
采用多普勒激光和局部静压测试装置,对文题进行了试验,並与涡轮搅拌器进行比较。试验发现,大三角形搅拌器较涡轮搅拌器具有较高的局部速度和均匀的速度分布及局部湍流强度大的优点。大三角形桨分散液滴主要靠湍流流动而不是由桨叶直接剪切分散,因此,在搅拌器周围可避免产生过细液滴,消耗较低功率就能获得均匀的液滴及分布,同时,该搅拌器优越的泵送能力和大体积流的高抽吸力,通过总抽吸头的测量亦被证实。  相似文献   

15.
四斜叶桨搅拌槽内的流动特性   总被引:2,自引:0,他引:2  
采用粒子图像测速技术(PIV),在直径为0.5m的平底搅拌槽内,对单层、双层平行布置和双层交错布置等三种条件下直径为0.2m的四斜叶桨(PBT)的流场进行测量,并利用标准k-ε模型对相应的流动特性进行计算流体动力学数值模拟。实验结果表明:三种流型下PBT叶片后方均存在单一的尾涡结构,其在径向方向的移动距离较轴向方向小。高湍流动能区与尾涡一起运动,实现能量自桨叶向搅拌槽内主体流动区的传递。模拟结果表明:标准k-ε模型对单层PBT搅拌槽内流场的预测与PIV实验吻合较好,而双层PBT的模拟结果与实验偏差较大,两层桨间径向速度被低估而轴向速度被高估是标准k-ε模型产生误差的主要原因,但是标准k-ε模型计算得到的功率准数与实验基本一致。  相似文献   

16.
搅拌槽内非牛顿流体流动场的数值模拟   总被引:1,自引:0,他引:1  
对搅拌槽内非牛顿流体湍流流动的数值研究还很缺乏.文中尝试利用k-ε模型计算了假塑性流体羧甲基纤维素钠(CMC)水溶液在搅拌槽内的三维流动场,并与粒子成像测速(PIV)法测得的实验结果进行了比较.计算结果表明,非牛顿流体CMC水溶液的宏观流动场与牛顿流体(水)的流动场有较大差异,主要是主体流动减弱,并在叶端附近形成涡旋流动.主体流动区内的速度分布与PIV测量结果吻合较好.剪切速率在槽内的分布相差较大,桨叶附近与槽壁处的剪切速率较大,在主体流动区域较小.  相似文献   

17.
涡轮桨搅拌槽内混合过程的大涡模拟   总被引:7,自引:0,他引:7  
在FLUENT 6.1软件平台和网络并行计算硬件平台上,采用大涡模拟(LES)的方法对涡轮桨搅拌槽内的混合过程进行了数值模拟。利用滤波函数对N av ier-Stokes方程进行空间滤波,对大尺寸的涡直接进行求解,而被滤掉的比网格小的旋涡通过Sam agorinsky-L illy亚格子模型求解,对搅拌桨区域采用滑移网格技术。结果表明:大涡模拟对尾涡的预报优于雷诺平均(RAN S)方法,混合时间以及示踪剂响应曲线模拟结果和实验结果吻合较好,且优于RAN S方法。大涡模拟方法为准确预测搅拌槽内湍流流动的非稳态及周期性脉动特性提供了一种有效的工具。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号