首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
随着能源危机及环境问题日益加剧,一种无污染且效率较高的电池——质子交换膜燃料电池(PEMFC)的研究对实际应用也日趋重要,研究的主要指标则是输出特性。根据质子交换膜燃料电池的数学模型,在simulink环境下建立了其稳态模型并进行仿真。对影响质子交换膜燃料电池输出特性的因素(单个电池的电压,活化过电压,欧姆过电压,浓差过电压,功率以及电池效率)进行分析,以电流密度为横轴,得出在不同工作温度,不同气体压强以及不同膜的水含量的情况下质子交换膜燃料电池的最佳稳态输出特性。通过优化参数,改善燃料电池的性能,这对质子交换膜燃料电池的实际应用具有重要的意义。  相似文献   

2.
以一反应面积2.5 cm 2利用微机电制程蚀刻流场板之微型质子交换膜燃料电池为研究对象,利用CFD-ACE+软件仿真燃料电池电化学反应分析微型燃料电池内部质子交换膜电化学反应分布情形,三维数值仿真电池性能与实验测试数据相互验证。三维模型仿真分析2个不同气体流量电流密度、温度、水和水含量于质子交换膜上的分布情形。结果表明:微型燃料电池内部温度分布受质子交换膜上气态水分布所影响,当操作电压定在0.4 V时,质子交换膜上较低的气体流量会有较佳的电化学反应,因此会有较均匀的电流密度分布,而质子交换膜上水亦较多且均匀分布,产生较低且较均匀的温度分布,仿真结果阐明微型燃料电池内部物理现象。  相似文献   

3.
为了研究质子交换膜燃料电池变载过程中气体传输对动态响应的影响,建立了5流道蛇形流场质子交换膜燃料电池三维单相模型,并基于实际参数进行Fluent仿真.分析了运行参数(包括工作压力、进气增湿、化学计量比)对质子交换膜燃料电池稳态性能的影响,以及运行参数对质子交换膜燃料电池动态性能的影响.结果表明:工作压力高、阳极湿度大、化学计量比大能提高燃料电池稳态性能,小电流密度下阴极湿度大燃料电池稳态性能好,大电流密度下则相反;工作压力高、化学计量比大、阴极湿度大能提高燃料电池动态性能.  相似文献   

4.
质子交换膜燃料电池运行参数的仿真优化   总被引:3,自引:0,他引:3  
为研究质子交换膜燃料电池(PEMFC)工作温度和反应气体工作压力变化对单体输出性能的影响,通过建立PEMFC单体的电化学模型及系统参数模型,利用Matlab软件,以Mark V型燃料电池发动机为实例,研究了工作温度和反应气体工作压力变化对电池单体输出性能的影响.结果表明:(1)工作温度每提高10K,单体的平均电压、平均功率将增加3%,在高温阶段增幅略有下降;(2)提高反应气体工作压力同样有利于提高电池的输出性能,但提高幅度受电池本身的限制,其工作压力一般不超过1MPa;(3)PEMFC还具有较好的瞬时过载能力.  相似文献   

5.
操作条件对质子交换膜燃料电池性能的影响   总被引:3,自引:0,他引:3  
通过测量电池的电流-电压、电流密度-功率和电流密度-时间曲线,研究了温度、压力和尾气排放速度对质子交换膜燃料电池(PEMFC)性能的影响,得出了电池较佳的工作条件。实验结果表明:氢气和氧气的较佳工作压力分别为0.03MPa和0.3MPa;在该压力下,电池工作温度为60℃时,电池的最大功率密度可达0.44W/cm2;当尾气排放速度为20mL/min时,电池能够高效、稳定的运行。  相似文献   

6.
质子交换膜燃料电池多孔介质中水的两相迁移   总被引:1,自引:0,他引:1  
在混合流动模型的基础上,建立了一个新的二维两相流模型来研究质子交换膜燃料电池内水分的传递规律和分布状态,在该模型中,催化剂层作为一个有厚度的实体包含在电极中.模型耦合了质子交换膜燃料电池电极中的流动方程.组分方程、催化剂层和质子交换膜中的电势和电流密度分布方程,可以应用在质子交换膜燃料电池的阴极,也可以使用在阳极.同时,模型还考虑了相变引起的液相和气相间的动量变化,重点模拟了水分在燃料电池的阴极、阳极和质子交换膜中的传递规律及其分布状态.模拟结果显示:升高加湿温度、提高电流密度和降低电池温度都会使电池质子膜中的水分含量增大,质子传导率升高,也会使阴极中液态水含量增加,阴极浓差极化加剧.  相似文献   

7.
针对某金属双极板燃料电池,为了分析不同工作条件对其输出特性的影响,采用计算流体动力学(CFD)方法对质子交换膜燃料电池进行了数值模拟,并通过与试验结果进行对比证明了仿真结果具有一定的参考价值。其后着重分析了工作温度、工作压力、反应物湿度对该金属双极板燃料电池输出特性的影响。结果表明,燃料电池性能受气体传质及膜的质子传导性的影响较大,增大工作压力、增加反应物湿度和适当提高工作温度能够改善燃料电池输出性能。对该金属双极板燃料电池,推荐工作温度为313K~333K,氢气100%加湿,空气60%加湿。  相似文献   

8.
利用自主开发的100 kW级燃料电池测试平台,对2款车用质子交换膜燃料电池的极化特性曲线、电流密度以及单电池一致性等性能进行了测试,提出了一种评价单电池一致性的方法.研究结果表明,2款质子交换膜燃料电池发动机在上述性能指标上有较大差异;在车载使用条件下,工作压力较高的燃料电池具有更好的环境适应性.  相似文献   

9.
通过对质子交换膜燃料电池进行理论建模和试验,分析了反应气体压力、电堆温度和增湿温度对燃料电池输出电压的影响,在PEMFC允许的工作参数范围内,这3个因素增加均可使电池输出电压上升.同时通过燃料电池系统的性能试验验证了仿真结果的正确性.燃料电池的高负荷持续工作特性测试表明其符合作为车用动力源高负载长时间运转的要求.测定了不同气体压力下燃料电池的效率,分析了燃料电池的输出功率与其效率之间的变化关系,讨论了燃料电池作为车用动力源时的能量效率,为车用质子交换膜燃料电池的使用与控制以便发挥其最佳性能提供参考.  相似文献   

10.
质子交换膜燃料电池的三维数值模拟   总被引:1,自引:0,他引:1  
对一种质子交换膜燃料电池进行了整个单电池的三维数值模拟.计算中采用单相等温模型,数值求解用整场离散、整场求解的方法,同时采用已知电流通过Butler-Volmer方程修正过电位获得电池电压的方法模拟电化学动力学过程.数值结果与实验值的对比表明,所采用的单电池计算模型在大部分工况下获得的输出电压与实验值偏差均可控制在10%~20%以内.计算并分析了单电池局部电流密度分布,同时将单电池模型与典型单元模型的计算结果进行了对比,发现两者在电流密度、质量组分的分布上均存在明显的差异,其原因主要在于典型单元边界条件设置所致.该工作将有助于对质子交换膜燃料电池的流动、传质与电化学过程进行进一步的数值研究.  相似文献   

11.
质子交换膜燃料电池(PEMFC)长期运行过程中,其部件因损伤产生的杂质金属离子对燃料电池的电化学性能有重要影响。模拟PEMFC中Ca2+污染燃料电池工况,研究了Ca2+对PEMFC电化学性能的影响。实验结果表明:随着污染时间的增加,燃料电池性能逐渐衰减,当污染时间超过9 h,电池电压急剧降低;在高电流密度区(电流密度>400 mA/cm2),电压衰减最明显。在500 mA/cm2电流密度下恒电流放电2 h后,电压降低了41%。Ca2+的存在及其积累对质子交换膜燃料电池有明显的毒化作用。  相似文献   

12.
为研究质子交换膜燃料电池内水对电池输出性能的影响,搭建了一维燃料电池气液两相流模型,该模型考虑了氧气、氢气、水蒸气和液态水在气体流道、气体扩散层和催化层中的流动以及膜结合水在聚合物中的传输过程,同时考虑了电池内部水的相变。采用该模型分析了进气相对湿度对燃料电池输出性能的影响,结果表明:在小电流密度工况下,高相对湿度入口气体能够降低电池内阻提高输出电压;在进气相对湿度较高和大电流密度条件下,阳极比阴极更容易发生水淹。  相似文献   

13.
基于COMSOL Multi-physics 5.3a仿真平台,建立三维模型对固体氧化燃料电池进行数值计算。考虑板式固体氧化物燃料电池单体内部的气体流动、组分质量分数、电化学反应过程,研究不同工况下的气体分布、电流密度和极化情况,分析电池长度、工作温度、进气成分对固体氧化物燃料电池工作性能的影响。研究结果表明:固体氧化物燃料电池入口处气体质量分数较大,电化学反应速率也较快;在高电流密度下,入口氧气的质量分数会显著影响电池性能,而在低电流密度下,氧气质量分数不是影响电池电压的主要因素;当电池工作温度升高时,电池内部很多参数会发生变化。  相似文献   

14.
质子交换膜燃料电池的建模与仿真分析   总被引:2,自引:0,他引:2  
针对当前燃料电池模型复杂、准确度不高、不利于控制策略研究等问题,对质子交换膜燃料电池工作原理进行研究,对燃料电池进行数学描述。通过分析电池工作过程中影响输出的几个主要因素即电化学电动势、活化极化过电压、欧姆极化过电压、浓度极化过电压与双层电荷层作用,建立燃料电池数学模型。用实验测试数据和参数优化方法确定模型参数,并利用Matlab/Simulink仿真平台对质子交换膜燃料电池模型进行仿真分析。仿真结果表明:模型输出结果与实验结果相吻合,模型具有良好的稳态性能;模型输出能快速响应负载变化,其动态性能良好;此模型能真实反映质子交换膜燃料电池工作特性,能有效地用于燃料电池控制策略研究。  相似文献   

15.
质子交换膜燃料电池是一种可以将储存在燃料中的化学能转化为电能的装置.应用Kriging代理模型结合遗传算法对流道宽、流道高和岸宽3个几何参数进行了优化设计,以质子交换膜燃料电池的净功率作为优化的目标函数来评价质子交换膜燃料电池的性能.数值模拟应用了商业软件ANSYS FLUENT.优化后的质子交换膜燃料电池流道内具有更高的压力,使更多的反应气体参加电化学反应,因此优化后的质子交换膜燃料电池的性能得到了提高.  相似文献   

16.
针对质子交换膜燃料电池输出特性不稳定问题,设计了一种以升压电路为主电路,联合脉冲激发的开关控制器为控制电路的直流-直流电压变换器。依据质子交换膜燃料电池原理,搭建出额定功率为35 k W的车用质子交换膜燃料电池堆模型,并验证了模型的有效性和可操作性。为了验证所设计变换器的控制效果,将35 k W质子交换膜燃料电池堆与直流-直流电压变换器进行了联合仿真。仿真结果表明:所设计的直流-直流电压变换器0.4 ms就能将电压稳定且误差控制在1.2%以内,能够很好地满足车用质子交换膜燃料电池堆对升压和稳压的要求。  相似文献   

17.
流道的截面形状对质子交换膜燃料电池的性能有较大影响。基于流体力学计算方法搭建了三维质子交换膜燃料电池单电池模型,通过比较不同流道横截面形状、调整流道与气体扩散层接触面积的方式对模型进行数值模拟分析。结果表明:三角形和圆形流道生成的电流密度较大,燕尾形流道电流密度分布均匀性最好;燕尾形和圆形流道有最佳的水气分布均匀性。  相似文献   

18.
为解决质子交换膜燃料电池发动机在功率变化时热管理系统温度不稳定、进出口冷却液温差大等问题,使用LMS AMESim仿真软件,以30 kW质子交换膜燃料电池发动机为基础,考虑整车的功率变化和驾驶员需求等因素,建立质子交换膜燃料电池发动机热管理系统模型。使用燃料电池发动机标定工况来分析热管理系统各个部件的冷却液温度和压力情况;采用新欧洲驾驶循环(NEDC)工况进行质子交换膜燃料电池热管理仿真测试。结果表明,所建立的热管理系统可以在NEDC工况下保持温度稳定,进出口冷却液最高温差约为5.6℃,可为质子交换膜燃料电池发动机热管理试验研究及测试提供一定的依据和指导。  相似文献   

19.
操作参数对PEMFC性能的影响   总被引:1,自引:0,他引:1  
通过实验研究三通道蛇形非对称流场的质子交换膜燃料电池(PEMFC)运行温度、气体加湿温度、空气流量、H2流量以及燃料电池工作压力等操作参数对PEMFC性能的影响。结果表明:燃料电池温度保持在333~343K,加湿温度与电池温度相同时,电池性能达到最佳状态;质子交换膜燃料电池中O2的还原反应是影响整个燃料电池放电性能的一个关键因素;工作压力为2.026×105Pa左右时电池的性能最佳。  相似文献   

20.
复杂流道质子交换膜燃料电池单体的两相流模拟   总被引:1,自引:0,他引:1  
为更真实地模拟质子交换膜燃料电池的工作性能,特别是电池内生成的水蒸气过饱和的情况,发展了一个简化的稳态的、非等温的三维两相流数学模型.模型考虑了相变过程对电池的温度场和传质过程以及电池性能的影响.应用模型对一个电极面积为3.12 cm×4 cm蛇型流道结构质子交换膜燃料电池进行了数值计算,得到了电池内复杂的流场、温度、局部电流密度和组分浓度等的多维空间分布.最后,分析了不同的阴极反应气加湿对电池性能所产生的影响.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号