首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
丙烯酸单体用氧化-还原引发剂进行还原聚合   总被引:1,自引:0,他引:1  
阐述了丙烯酸单体用氧化-还原引发体系进行的“还原聚合’.实验结果表明,聚合物的分子量主要受还原剂用量的影响,在低温下聚合可获得分子量分布窄的聚合物.  相似文献   

2.
以溴异丁酸对硝基苄酯为引发剂、溴化亚铜(CuB r)/2,2′-联吡啶为催化体系进行了甲基丙烯酸甲酯的原子转移自由基聚合;以对硝基溴化苄为引发剂、溴化亚铜(CuB r)/2,2′-联吡啶为催化体系进行了苯乙烯的原子转移自由基聚合;将得到的端硝基聚合物进一步还原,制得端氨基聚合物。结果表明,上述两个聚合过程均为活性自由基聚合过程,得到窄分子量分布的聚合物;1H-NMR分析表明,得到的端氨基聚合物链的α端都有1个氨基,ω端都有1个溴原子,还原过程没有破坏原有的聚合物链结构。  相似文献   

3.
本文采用水相沉淀聚合法研究了二过碘酸合银(Ⅲ)-尿素氧化还原引发体系在碱性介质中引发丙烯腈聚合反应,测得了各种因素对聚合反应速率、聚合物分子量的影响,并探讨了引发机理。  相似文献   

4.
本文采用水相沉淀聚合法研究了二过碘酸合铜(Ⅲ)钾—尿素组成氧化还原引发体系在碱性介质中引发丙烯睛聚合反应。测得了各种因素对聚合反应速率、聚合物分子量及分子量分布的影响,探讨了聚合反应机理。  相似文献   

5.
研究了丙烯酰吩噻嗪及其衍生物丙烯酰吩怀过氧化苯甲酰组成氧化还原体系引发丙烯腈的光聚合,研究发现APT-BPO比APTO-BPO引发能力高,而前者引发得到的聚合物相对分子质量比后者引发得到的要低。  相似文献   

6.
用循环伏安法和旋转环盘电极技术研究中位-四-磺基苯基卟啉的铁、锰配合物(FeTPPS和MnTPPS)的氧化还原性能.比较均相溶液中它们对氧电还原的催化作用,发现FeTPPS的电催化活性优于MnTPPS,但尚依赖于溶液介质的性质.用电聚合方法将FeTPPS和MnTPPS分别嵌入聚吡咯中制成聚合物修饰电极,可改善电催化性能,不仅使氧还原电位正移,而且增大还原电流.讨论了聚合物修饰电极对氧还原的可能影响.  相似文献   

7.
研究了4,4'-偶氮二[4-氰基戊酰(对-二甲基氨基)苯胺](ACPDA)/过氧化二苯甲酰(BPO)氧化还原引发体系在N,N-二甲基甲酰胺(DMF)中引发苯乙烯(St)的聚合及其动力学行为.考察了聚合反应温度、单体浓度、ACPDA浓度和BPO浓度对聚合物分子量和聚合反应速率的影响,测定了反应级数和聚合反应的活化能.实验结果表明:在一定范围内,聚合反应速率随单体浓度、ACPDA浓度、BPO浓度的增加和反应温度的升高而加快;聚合物分子量随单体浓度的增大而增大,随ACPDA浓度、BPO浓度的增大和反应温度的升高而降低.该体系具有氧化还原引发体系的特点,其聚合速率方程为Rp=K[St]1.52[ACPDA]0.56[BPO]0.49,聚合反应的表观活化能Ea=35.50 kJ/mol.  相似文献   

8.
本文研究了4,4′-偶氮二[4-氰基戊酰(对-二甲基氨基)苯胺](ACPDA)/过氧化二苯甲酰(BPO)氧化还原引发体系在N,N-二甲基甲酰胺(DMF)中引发甲基丙烯酸甲酯(MMA)的聚合及其动力学行为.考察了聚合反应温度、单体浓度、ACPDA浓度和BPO浓度对聚合物分子量和聚合反应速率的影响,测定了反应级数和聚合反应的活化能.结果表明:在一定范围内,聚合反应速率随单体浓度、ACPDA浓度、BPO浓度的增加和反应温度的升高而加快;聚合物分子量随单体浓度的增大而增大,随ACPDA浓度、BPO浓度的增大和反应温度的升高而降低.该体系具有氧化还原引发体系的特点,其聚合速率方程为Rp=K[MMA]1.57[ACPDA]0.57[BPO]0.66,聚合反应的表观活化能Ea=38.06 kJ/mol.  相似文献   

9.
以对乙烯基苯磺酰氯作为引发剂进行了苯乙烯的原子转移自由基聚合,由于对乙烯基苯磺酰氯同时含有可聚合的乙烯基和原子转移自由基聚合引发基团,因此可以得到支化结构的聚苯乙烯。用凝胶渗透色谱对不同对乙烯基苯磺酰氯浓度下所得聚合物的分子量及其分布进行了表征,发现所得聚合物的平均分子量明显大于按照每个对乙烯基苯磺酰氯分子产生一个聚合物链计算的理论分子量,并且分子量呈多峰分布。  相似文献   

10.
研究了铁精矿冷固球团矿在工业性回转窑内的还原行为。研究结果表明:由于复合粘结剂集粘结、催化和还原诸功能于一体,使冷固球团矿按均质反应模型还原;铁氧化物催化作用及粘结剂的热致聚合效应,使还原反应前期固体桥键得到强化,在还原反应中期粘结剂促进金属桥键形成和长大,从而使冷固球团矿具有良好的还原性及还原过程中具有足够的机械强度,消除了低温还原粉化,是一种优质的直接还原炉料。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号