首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 175 毫秒
1.
为了改进从铜电解液中脱除锑的工艺,通过在硫酸体系料液中加入助萃剂研究N235对锑的萃取性能。考察助萃剂浓度、N235体积分数、相比、水相硫酸浓度、萃取时间及温度对锑萃取率的影响。研究结果表明:助萃剂浓度、N235体积分数和相比是影响锑萃取率的主要因素;在有机相组成为20%N235+10%异辛醇+70%磺化煤油(体积分数)、助萃剂浓度为0.1 mol/L、硫酸浓度为3 mol/L、相比为1:1,震荡时间为5 min时,单次锑萃取率大于60%。  相似文献   

2.
采用溶剂萃取法脱除铜电解液中的杂质,通过在铜电解液中加入助萃剂研究萃取剂N235对Sb和Bi的萃取性能。考察N235体积分数、助萃剂浓度、有机相与水相的体积比(相比)、萃取时间等因素对Sb和Bi萃取率的影响。研究结果表明:在有机相组成(体积分数)为20%N235+10%异辛醇+70%磺化煤油,助萃剂浓度为0.1 mol/L,相比为1:1时,铜电解液经单级萃取,Sb和Bi的萃取率(质量分数)分别为56.1%和96.6%。在有机相组成和助萃剂浓度保持不变的情况下,相比为2:1时,铜电解液经过7级逆流萃取,Sb的萃取率为86.0%,Bi的萃取率为97.1%。7级逆流萃取平衡有机相经氨水沉淀反萃—水洗—酸化处理后,Sb和Bi总反萃率可达98.4%和96.5%,有机相可循环使用。  相似文献   

3.
采用"酸浸-萃铟-萃镓-沉锗"工艺,对铟绵中稀散金属铟锗镓进行了综合回收研究,并优化了各工序工艺参数。研究了在硫酸体系下,铟锗镓浸出率与浸出温度、浸出时间和硫酸初始质量浓度的关系,在浸出温度80℃、浸出时间80 min和硫酸初始质量浓度180 g/L时,铟锗镓浸出效果最好。以30%(体积分数)二-2-乙基己基磷酸(P204)+磺化煤油和10%(体积分数)P204+磺化煤油+1.5%(体积分数)C7-9异氧肟酸(YW100)为有机相,对铟和镓进行萃取,研究了相比(O/A)、混合时间和料液初始pH值对铟萃取率和镓萃取率的影响。研究结果表明:在最佳萃取条件下,即萃取铟相比O/A=1∶1、混合时间5 min和料液初始pH值为0.2时,铟的萃取率最高,为88.5%;萃取镓相比O/A=1∶1、混合时间3 min和料液初始pH值为0.5时,镓的萃取率最高,为77.2%。在单宁沉锗工序中探讨了沉淀温度、pH值、搅拌时间和单宁酸倍数对锗沉淀率的影响,得出沉锗的最佳工艺参数为:用20倍的单宁酸,在沉淀温度70℃、pH值为2.5的条件下搅拌10 min。  相似文献   

4.
采用Lix973作萃取剂,硫酸作反萃剂,从氨性浸出液中萃取分离铜和钴。研究萃取剂体积分数、有机相与水相的体积比(相比)、混合时间、反萃剂质量浓度、反萃相比和反萃时间对萃取分离铜和钴的影响,确定获得Lix973萃取分离铜的优化条件。研究结果表明最佳萃取铜的条件为:室温下有机相与水相的体积比1:1,混合时间2 min,萃取剂Lix973体积分数5%。在此实验条件下,铜的一级萃取率达到99.29%;最佳反萃铜的条件为:室温下反萃相比2:3,反萃时间1 min,硫酸质量浓度160 g/L。在此实验条件下,铜的一级反萃率为96.13%。  相似文献   

5.
文章以甲基异丁基甲酮(MIBK)为萃取剂,分离提纯铁样中的Fe3 ;采用正交实验探讨了萃取时间、萃取温度、水相盐酸浓度、水相Fe3 质量浓度及油水相比对Fe3 萃取率的影响;结果表明,水相盐酸浓度对萃取率的影响最大,其次是油水相比。  相似文献   

6.
采用酸碱法从黄粉虫幼虫脱油脂后的干燥虫粕中提取甲壳素,通过正交试验设计对提取工艺进行优化。结果表明,HCl的质量分数和Na OH的质量浓度、浸泡时间、浸泡温度、提取剂用量对虫粕甲壳素的提取有较大的影响,其影响程度按照由大到小的顺序依次为:HCl浸泡时间,HCl浸泡温度,HCl的质量分数,提取剂用量;Na OH的质量浓度,浸泡温度,浸泡时间,提取剂用量。提取黄粉虫虫粕中甲壳素的最优工艺条件为:酸浸时间2.5 h,酸浸温度80℃,质量分数为0.08的HCl,提取剂用量15 m L·g~(-1);碱浸时间3 h,碱浸温度80℃,质量浓度为60 g·L~(-1)的Na OH,提取剂用量20 m L·g~(~(-1))。制得的产品为白色片状固体,灰分的质量分数为0.006 7,剩余蛋白的质量分数为0.020 3 mg·g~(-1)。产品提取率为13%。  相似文献   

7.
中性磷类萃取剂从卤水中萃取锂的研究   总被引:13,自引:0,他引:13  
为回收卤水中的金属锂 ,在 Fe Cl3存在的条件下 ,通过实验研究中性磷类萃取剂萃取锂的效果 ,并研究萃取时间、温度、萃取剂浓度、金属盐 (Mg2 ,Na ,K )浓度、酸度对TBP-煤油体系从高镁锂比的模拟卤水中萃取锂的影响规律。在实验中向高镁锂比的模拟卤水中添加 Fe Cl3,比较了中性磷类萃取剂 TBP、 DBBP和 TOPO萃取锂的效果 ,结果表明 TBP对锂有非常显著的萃取效果 ,而 DBBP和 TOPO的萃取能力则很弱。 TBP-煤油体系萃取锂时较优的萃取条件为 :萃取时间约为 2 0 min,温度为 2 0~ 2 5℃ ,[Fe3 ]/[L i ]为 1.5~ 2 .0 ,TBP体积分数为 5 0 %~ 70 % ,Mg Cl2 浓度大于 3m ol/ L ,p H值约为 2 ,在萃取锂之前应先将钠盐和钾盐分离析出。  相似文献   

8.
制备了1-辛烷基-3-甲基咪唑六氟磷酸盐离子液体,再以离子液体(IL)为萃取介质、异辛醇为萃取剂及煤油为稀释剂建立盐湖卤水硼萃取研究模型,考察了离子液体用量和萃取条件对硼萃取的影响。异辛醇从卤水中萃取提硼的最佳实验条件:离子液体体积分数为10%,萃取剂体积分数为50%,相比(O/A)为1∶1,萃取时间10 min,pH 2.4,Mg2+浓度为4.268 mol/L。在此条件下,当萃取级数为3级时,萃取率为99.54%,卤水中的硼可被完全萃取到有机相中。  相似文献   

9.
对粉煤灰硫酸焙烧熟料溶出液空气和双氧水两段协同除铁过程进行研究。研究结果表明:当恒定空气流速为50 m L/min和全程搅拌速率为500 r/min时,在空气氧化时间为7 h,空气氧化温度为85℃,H_2O_2的氧化时间为30 min及其氧化温度为25℃,质量分数为14%、用量为5 m L等优化条件下可使综合除铁率达99.25%,溶出液铁质量浓度可由1.185 g/L降至8.800 mg/L;除铁后获结晶硫酸铝煅烧所得Al_2O_3品位(质量分数)为98.71%。  相似文献   

10.
镍精矿氯气浸出液净化除铁工艺   总被引:1,自引:0,他引:1  
硫化镍精矿氯气浸出一净化一电积工艺作为镍提取冶金的新方向,其净化过程大多采用溶剂萃取方法.该方法对于含铁较高的浸出液在运行一段时间后会出现萃取有机相性质变坏的问题,影响萃取剂的正常使用.因此,净化过程中必须先进行单独除铁.本试验研究了针铁矿法从镍精矿氯气浸出液中除铁的工艺.实验考察了在氯盐体系中氧化剂用量、反应温度、反应pH值、反应时间等因素对除铁效果的影响.确定了最佳工艺条件氧化剂用量5g/L,反应温度85℃,反应pH值2.5~3.0,反应时间2h.在该工艺条件下,除铁率高达99.8%以上,铁渣中Ni,Co损失小,除铁后液含铁小于0.01g/L,达到了净化要求.  相似文献   

11.
用三口瓶作反应器,先加入稀盐酸与铁粉反应生成氯化亚铁,确定了反应过程中盐酸浓度(质量)为18%(1:1)、温度为85℃、盐酸与铁粉的质量比为1.4:1、反应时间为20min的最佳制备条件;再加入稀盐酸,在酸性条件下用双氧水将氯化亚铁氧化成氯化铁,确定了反应过程中搅拌速度为20、双氧水与铁粉质量比为1.63:1、温度为55℃、双氧水加入速度为0.5~1.0mL/min的最佳氧化条件。  相似文献   

12.
液膜法从川黄连中提取黄连素的研究   总被引:1,自引:0,他引:1  
本文研究液膜法从川黄连中提取黄连素盐酸盐的实验条件。结果认定,母液pH值为10,膜内盐酸浓度为0.3mol/L,Span-80用量为2%,油内比为2:5,乳水比为1;4时为最佳实验条件。并将实验结果与传统方法进行了对比,证明液膜法具有许多优点,值得采用。  相似文献   

13.
研究了以TBP从盐酸溶液中萃取分离锡与锌,发现如用煤油作稀释剂,则萃取过程会出现第三相。选用MIBK或癸醇作调相剂来消除第三相。作者解释了当用MIBK作调相剂,盐酸浓度大于7mol/L时,又会出现第三相的原因。萃取的最佳条件为:25%TBP-10%MIBK(或癸醇)-65%煤油;室温;6mol/L HCl;负载有机相中的杂质离子Zn~(2+)用6mol/L HCl洗涤,一次洗涤率达95%左右;负载有机相中的锡用0.24mol/L HCl反萃。实验比较了TBP萃取Sn~(4+)与Sn~(2+)的性能,解释了Sn~(4+)比Sn~(2+)略易萃取的原因。由于Sn~(4+),Zn~(2+)的竞争萃取,D_(Zn~(2+))随初始水相中[Sn~(4+)]的增加而减小,但当[Sn~(2+)]小于18g/L时,D_(Zn~(2+))几乎不变。  相似文献   

14.
文中以提取温度、料液比、提取时间和提取次数为因素,采用正交试验研究热水浸提的最佳提取条件,并以此为基础研究热水浸提、冷热交替浸提、盐酸溶液浸提和氢氧化钠溶液浸提对蛹虫草菌丝体胞内多糖提取率的影响. 结果表明:热水浸提的最佳提取工艺为:m(料): V(液) = 1: 40,提取温度75 ℃,提取时间2.5 h,提取2次,多糖的提取率为14.74%,其中料液比为影响多糖提取率主要的因素,其他因素依次是提取温度、提取时间和提取次数. 按照此工艺,热冷交替浸提(热水浸提2.5 h + 冷水浸提48 h)多糖提取率最高,为15.92%. 55 g.L-1的氢氧化钠溶液浸提多糖的提取率为6.31%;25 gL-1的盐酸溶液浸提多糖的提取率为9.93%. 因此,冷热交替浸提对蛹虫草菌丝体胞内多糖提取率最高,其次是热水浸提、盐酸溶液浸提和氢氧化钠溶液浸提.  相似文献   

15.
萃取-反萃取以提取酸溶液中的镓   总被引:2,自引:1,他引:1  
以磷酸三丁酯为萃取剂,NH4Cl为反萃剂,系统探究了不同萃取环境下萃取和反萃取效果,实验结果表明,在6 mol/L的盐酸体系中,将体积分数为30%的TBP,按1∶1的相比,震荡6 min以萃取25 mg/L的镓溶液,萃取率达98.61%~98.69%,硫酸-氯化钠体系也可实现良好的萃取效果,此外还考虑了其他离子的干扰作用。而在pH=5.5,反萃取剂浓度为2.5 mol/L,反相比为2∶1的条件下,反萃取率可达100%,优化了萃取-反萃取条件,实现了镓的高效回收。  相似文献   

16.
为了研究酸热法提取辅酶Q10的最佳工艺条件,系统研究了酸的种类,破壁温度,酸的浓度,酸的添加量,破壁时间等因素对辅酶Q10提取效果的影响.结果表明,酸热法提取辅酶Q10的最佳工艺条件为:盐酸浓度3 mol/L,盐酸的添加量10 ml/g(干菌),破壁温度90℃,破壁时间25 min.  相似文献   

17.
低品位硫化锌矿生物浸出液中锌的富集和铁的去除   总被引:5,自引:0,他引:5  
选用D2EHPA-TOA体系作为低品位硫化锌矿生物浸出液中锌的富集和铁的去除的溶剂萃取体系。结果表明,该体系能显著改善硫酸锌溶液中锌的萃取富集和铁的去除性能,锌的最大饱和容量增加约12%,负锌有机相只需用0.25mol/L的稀硫酸经一级即可达到完全反萃,负铁有机相可以用4mol/L硫酸反萃除去。  相似文献   

18.
采用响应面分析法优化紫色菊花花瓣中花青素苷的提取工艺.本试验以紫色菊花品种"红五九"自然晾干陈放后花瓣为材料,采用Box-Behnken中心组合试验设计,获得多元二次回归方程,并预测紫色菊花花瓣花青素苷得率.结果表明,分别以酸性乙醇和酸性甲醇为浸提液时,紫色菊花花瓣花青素苷的最佳提取工艺参数为:乙醇浓度90%(V/V),盐酸浓度0.4mol·L-1、盐酸与乙醇体积比1∶1、温度40℃、料液比1∶70;甲醇浓度100%(V/V),盐酸浓度0.1mol·L-1、盐酸与甲醇体积比1∶1、温度42℃和料液比1∶70,一次浸提的花青素苷得率分别为8 266.03μg·g-1和7 916.04μg·g-1,与前期研究通过正交试验获得的最优工艺参数下的花青素苷得率均有明显提高,以酸性乙醇为浸提液效果较好,可为紫色菊花花瓣花青素苷的生产提供参考.  相似文献   

19.
漂浮阳极泥经过盐酸浸出、稀释水解、氢氧化钠中和得到氯氧铋,氯氧铋经过氢氧化钠转化制备得到三氧化二铋.当盐酸浓度为6mol/L,固液比为1∶5,反应温度为80℃,反应时间为1h时,漂浮阳极泥中锑和铋浸出率分别达到99.17%和99.08%.当稀释比为8∶1时,盐酸浸出液中锑水解率为98.13%,铋水解率仅为8.8%.稀释后液中加入氢氧化钠溶液,当pH为1.5时,铋水解率达到99.5%,水解产物氯氧铋(BiOCl)中铋、氧、氯的质量分数分别为54.23%,19.30%和14.61%.氯氧铋再次经过盐酸浸出,稀释水解,氢氧化钠沉淀得到氯氧铋.除杂后氯氧铋经过硫酸洗涤、氢氧化钠转化,当氢氧化钠浓度为6mol/L,液固比为3∶1,反应温度为80℃时,反应2h后过滤,用0.5mol/L盐酸洗涤得到形貌为纤维状、晶型为单斜的α-Bi2O3,氧化铋纯度达到99.81%.  相似文献   

20.
通过双相酸水解法优化山奈酚提取条件,结合高效液相色谱(HPLC)法,通过单因素实验考察酸浓度、提取时间和固液比对山奈酚提取率的影响,并利用响应面Box-Behnken实验优化提取山奈酚的最佳工艺. 实验结果表明:最佳提取条件的盐酸浓度为6.1×10-2 mmol/L,提取时间为12.87 min, 固液比为1∶137.46, 提取率达1.11%; 山奈酚具有一定的抗氧化作用, 对超氧自由基(·O2-) 和1,1-二苯基-2-三硝基苯肼( DPPH·)均有一定的清除能力, 尤其对DPPH·的清除能力更强, 且清除能力随浓度的升高而提高.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号