首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 375 毫秒
1.
粗大奥氏体晶粒中应变诱导铁素体形成特点   总被引:4,自引:1,他引:3  
观察粗大奥氏体经不同应变后的淬火组织,分析应变诱导铁素体的形成特点.结果表 明:奥氏体晶粒尺寸影响应变诱导铁素作的形成方式;在形变初期粗大奥氏体(~250-μm)应变诱 导铁素体主要在晶界、退火孪晶界形核,随应变增加,可通过形变带形核:而尺寸较小的奥氏体 (~7 μm),铁素体形核主要在晶界;随奥氏体晶粒尺寸增大,形变带上形核比例明显提高,而在 晶界形核的比例减小.  相似文献   

2.
ZrC/奥氏体相界面形变诱导相变动力学   总被引:2,自引:0,他引:2  
研究热模拟单向压缩条件下含ZrC粒子的低碳锰(铌)钢在形变诱导相变过程中的铁素体转变动力学关系。研究结果表明:添加ZrC粒子使试验用钢奥氏体晶界的形核率明显增加,影响形变诱导铁素体的形态、分布及晶粒细化效果;高温变形时由于形变诱导的作用,铁素体转变量随应变的增大不断增加,而铁素体晶粒的细化主要是由于动态再结晶的作用,试验用钢在形变诱导相变的变形温度TAe3~TAr3之间的低温区进行变形(TAe3为形变诱导相变的开始温度,TAr3为形变诱导相变的终止温度),可以加速铁素体形核;同时,一定粒径和体积分数(0.6%)的ZrC粒子作为形变和再结晶核心,不仅阻碍位错的运动,而且造成位错密度增大,因而提高α-Fe形核率。在温度为900℃、应变速率为1s-1的条件下,试验用钢获得超细组织对应的ZrC粒子临界体积分数为0.6%。  相似文献   

3.
低碳钢过冷奥氏体形变过程组织演变机制   总被引:7,自引:4,他引:7  
低碳钢过冷奥氏体形变过程将发生形变强化相变及铁素体的动态再结晶,导致晶粒超细化.与未形变的过冷奥氏体等温转变相比,形变极大地促进了奥氏体向铁素体的转变,使铁素体形核率急剧升高,铁素体晶粒尺寸显著降低.形变强化相变是一以形核为主的过程.在形变后期,当形变强化相变铁素体转变基本完成后,将发生铁素体的动态回复和动态再结晶.比较不同应变速率对组织演变影响的结果表明,应变速率较低条件下,易形成铁素体与第2组织层状分布的条带特征;应变速率较高时,组织的条带特征不显著.  相似文献   

4.
以X70管线钢为实验材料,研究不同变形量和冷却速率对管线钢显微组织的影响.结果表明,在奥氏体未再结晶区进行适量的变形,从而形成位错、形变带和胞状组织等缺陷,可以增加铁素体在奥氏体晶内的形核位置和形核率,增大相变驱动力,有利于在随后的冷却过程中得到晶粒细小的针状铁素体组织;其中变形量ε2=0.4、冷却速率为30~60 ℃/s(油冷)下冷却的试样,能够得到最佳的针状铁素体组织,可以满足工程上要求组织中针状铁素体占80%以上的要求.  相似文献   

5.
Q235碳素钢不同热变形条件下退火过程的织构分析   总被引:1,自引:0,他引:1  
利用扫描电镜、背散射电子衍射(EBXD)和X射线衍射技术研究了三种方式热变形后保温时铁素体的长大行为.结果表明,回复、再结晶和长大的相对程度与第二相粒子的状态及铁素体的取向分布有关.形变强化相变产生的超细铁素体中形变储存能较低,退火时难以发生静态再结晶,而以晶粒长大为主,铁素体因第二相出现较晚而充分生长:A1温度以下纯铁素体区形变的铁素体虽然形变储存能最高,形变量最大,但第二相钉扎最明显,铁素体仅发生部分再结晶,<111>取向形变晶粒比<100>取向形变晶粒更明显地被削弱;α+γ两相区形变时,铁素体(亚)晶粒发生回复式长大,<111>取向晶粒和<100>取向晶粒有不同的再结晶倾向.  相似文献   

6.
本文研究了热轧工艺参数对15MnV钢奥氏体再结晶行为,奥氏体状态和铁素体组织的影响。实验结果表明,由于奥氏体的形变和再结晶细化,钢坯的加热温度对轧后奥氏体晶粒大小影响不大。在奥氏体的完全再结晶温度范围内,形变量对再结晶百分数有显著的影响。低于完全再结晶温度范围,则热轧温度的影响将会变得更为重要。随着形变温度的下降或形变量增大,奥氏体晶粒内的形变带密度将增大,铁素体晶粒将细化。  相似文献   

7.
研究了低碳钢过冷奥氏体在760℃,形变速率为1 s-1和10 s-1变形时组织演变规律.结果表明,形变速率为1 s-1时真应力-应变曲线双峰特征为形变强化相变和铁素体动态再结晶的表征,相变形核集中在铁素体/奥氏体相界前沿奥氏体高畸变区,晶粒长大在时间和空间上受到限制,细化能力较高;形变速率提高到10 s-1时,相变动力学提前,曲线只表现为形变强化相变的单峰特征,相变形核除了在上述铁素体/奥氏体相界前沿奥氏体高畸变区,还分布到奥氏体晶内各处,晶粒间约束有所减小,尺寸稍大.通过形变强化相变和铁素体动态再结晶可以获得平均晶粒尺寸为(1.98士1.07)μm和(2.33士1.01)μm(10 s-1)左右的微细铁素体晶粒.  相似文献   

8.
针状铁素体组织强度高、韧性好,基于氧化物夹杂形核,有很强的自身细化晶粒的能力,获得大量超细针状铁素体组织是超级钢研究的主要发展方向.建立了Fe-C-X系合金针状铁素体在奥氏体贫碳区先共析转变的热力学模型,并对Q235钢进行了数值模拟.结果表明,针状铁素体在实际相变开始温度(约923 K)的相变驱动力(绝对值)为450~740 J/mol,而且随着贫碳区碳含量的减少而增加.该模型可获得比以往扩散模型更大的相变驱动力,从热力学角度来讲,针状铁素体在奥氏体贫碳区很可能具有先共析转变的相变过程.  相似文献   

9.
超细第二相粒子强化低碳微合金钢铁材料的研究   总被引:1,自引:0,他引:1  
采用Gleeble-1500热模拟试验机进行单向压缩热模拟试验,研究了试验钢在形变诱导铁素体相变过程中ZrC粒子对铁素体晶粒细化的促进作用,结果表明:粒径小于1.0μm的ZrC粒子作为形变和再结晶核心可以加速铁素体形核,从而细化铁素体晶粒,为提高α-Fe形核率,试验钢获得超细组织的ZrC粒子临界体积分数是0.6%,当ZrC粒子的加入量为0.5%、轧制变形量为0.6时,轧后水冷可获得3~4μm的超细晶粒组织,抗拉强度约提高70%,材料综合性能显著提高.  相似文献   

10.
低碳钢中超细铁素体的长大倾向   总被引:4,自引:1,他引:4  
在热模拟单向压缩条件下考察了四个不同C,Mn含量的低碳钢中通过形变强化相变产生的超细铁素体在模拟卷取温度下的长大倾向.结果表明,不同C,Mn含量的四种钢中的超细铁索体在~500℃的保温0~10min过程中都很稳定,没有明显的长大过程,也未明显观察到铁素体的静态再结晶.超细铁素体稳定的主要原因是由于稳定的第二组织(珠光体或渗碳体颗粒)的有效钉扎,它既阻止了铁素体的明显长大,也抑制其静态再结晶的充分进行.但不同C,Mn含量的四种钢中的第二组织有不同的演变规律,保温过程中形变奥氏体内形成离异珠光体并缓慢粗化.另外,利用背散射电子衍射取向成像技术还测定了08钢保温过程中的取向(差)变化.  相似文献   

11.
使用电子背散射衍射技术研究了低C高Mn高Nb成分设计下,非再结晶奥氏体变形及加速冷却速率对低碳贝氏体组织取向差特征和大角晶界分布的影响.结果表明,与原奥氏体晶粒内部的相变组织相比,原奥氏体晶界附近具有更高的大角晶界密度,非再结晶区奥氏体变形及快速冷却都有利于提高共格相变的驱动力、弱化变体选择以及有效增加大角晶界密度.此外,非再结晶区的大变形除了可充分压扁奥氏体晶粒和增加单位面积的奥氏体晶界密度外,还导致奥氏体晶界上细小的非共格转变铁素体晶粒生成,且这些铁素体晶粒与相邻组织表现出大取向差.  相似文献   

12.
通过热模拟实验研究了含钒0.19%的0.2C-0.5Si-0.08P-Mn TRIP钢连续冷却过程中的相变行为.实验结果表明:奥氏体未再结晶区进行50%的大变形,使随后连续冷却过程中的铁素体开始相变温度Ar3提高42~58℃;相同冷却速度下,尤其是当冷速小于20℃/s时,变形促进铁素体的形成,而使贝氏体形核率降低;钒的氮化物和碳化物在铁素体晶粒和晶界处弥散析出,无论变形或未变形条件下,冷速0.5℃/s时,析出粒子尺寸在2~5nm范围内,只有极少量尺寸约为~20nm的较大析出粒子.  相似文献   

13.
通过电子背散射衍射实验分析方法,研究变形量和热老化因素对双相不锈钢的拉伸性能、相边界、局部应变分布、重位点阵特殊晶界和取向分布的影响。研究结果表明:热老化后,双相不锈钢的强度提高,韧性降低;在大变形条件下铁素体晶粒内小角度晶界的数量和密度略有增加;热老化材料的铁素体的塑性变形和局部应变能力下降,大变形破坏初始奥氏体和铁素体以及∑3孪晶边界的分布。  相似文献   

14.
研究了碳、锰含量对低碳(锰)钢形变强化铁素体晶粒数目变化的影响.结果表明,形变使低碳(锰)钢过冷奥氏体内部形核位置增加,铁素体形核率显著提高,晶粒大大细化.碳、锰含量提高有利于钢中过冷奥氏体累积变形的增加,形变强化相变晶粒细化能力增强,而碳的促进作用尤为显著.  相似文献   

15.
通过热模拟实验考察了低碳钢在略高于Ar3温度变形时发生形变诱导铁素体相变(DIFT)的组织演变规律;探讨了变形后连续冷却以及在不同温度下保温对DIFT组织的影响·结果表明,DIFT组织含量随变形量的增大而增多,但在较大的变形量下仍然有部分奥氏体没有发生DIFT;在随后的冷却过程中,未转变奥氏体通过静态相变形成粗大的铁素体,与形变诱导铁素体组织一起形成混晶组织·DIFT铁素体晶粒在形变后冷却过程中发生长大现象·实验测定和理论计算结果都表明,在连续冷却条件下,形变诱导组织存在晶粒长大终止温度,当温度低于该温度时DIFT晶粒停止长大;在不同温度等温时,也存在DIFT晶粒稳定的温度上限,在低于该温度保...  相似文献   

16.
Owing to excellent strength, toughness and corrosion resistance, duplex stainless steels(DSS) are widely used in constructional and petrochemical applications. Sigma phase, which has detrimental impact on the properties, is readily precipitated during hot working of DSS. However, precipitation behavior of sigma phase during superplastic deformation, which is the most significant processing method of DSS, is still unclear. In the current study,the effect of superplastic deformation on the precipitation behavior of sigma phase was investigated in 3207 duplex stainless steel. The result shows that superplastic deformation could prevent sigma phase precipitation generally by increasing mobility of grain boundaries and decreasing misorientation of the sigma phase boundaries, resulting in some sigma phase precipitated on the twin boundaries. Most of the sigma phase precipitated on ferrite-austenite interface with misorientation of 20–25°, while it precipitated in ferrite or austenite with the misorientation of 40°–45°. The orientation relationship between sigma phase and matrix matched well in austenite and on the ferrite/austenite interfaces, while it showed a small misfit in ferrite. The prevention effect of the superplastic deformation on the sigma phase precipitation was beneficial to quasi stable deformation stage,resulting in longer elongation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号