首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
利用无乳化剂乳液聚合法合成了粒度均匀 ,具有活性醛基的聚丙烯醛微球 ,并对影响其粒径、成球性、色泽及分散性等性质的 p H值、丙烯醛浓度、反应温度、催化剂浓度和搅拌方式等工艺条件做了优化选择 ;产物微球纯度高 ,表面活性大 ,粒径均一可调。利用 TEM和 IR技术对产物进行了初步表征 ,并对聚丙烯醛微球的聚合生成机制进行了初步探讨。  相似文献   

2.
以过硫酸铵为引发体系,选用丙烯酸、丙烯酰胺、甲基丙烯酸甲酯、丙烯酸乙酯、丙烯酸丁酯五种单体共聚合成了聚丙烯酸类浆料,测试了浆料的含固率、粘度、粘附力,探讨并分析了引发剂用量、乳化剂配比、反应温度、搅拌速度四个因素对浆料性能的影响,最终确定了合适的反应条件:引发剂用量0.6%~0.9%,乳化剂配比1:1,反应温度80℃,搅拌速度120转,分。  相似文献   

3.
针对生物质快速热解所制得的生物油黏度高、酸度高、含氧量高和水分高等缺点,提出了一种新型的生物油品质提升方法--乳化生物油/生物柴油.通过改变不同的反应条件发现,过高的乳化剂浓度会导致合并、结块,影响效果,过低则使乳化液不稳定;较高的搅拌强度会产生较稳定的乳化液;过长的反应时间将会导致乳化剂脱离生物油/生物柴油的表面.实验结果表明,最佳反应工况为乳化剂体积分数4 %,原始生物油/生物柴油体积比4 ∶ 6,搅拌强度为1200r/min,乳化温度30℃和混合时间15min.另外,对乳化燃料的含水量、黏度、分子量和酸度等物性的测试结果表明,与生物油相比,这些性质均有较明显提高.  相似文献   

4.
利用醋酸乙烯作为单体,OP-10作为乳化剂,聚乙烯醇作为保护胶体,过硫酸铵作为引发剂,采用乳液聚合的方法制成聚醋酸乙烯酯浆料。本问分析了引发剂的用量、乳化剂的用量及反应温度对聚醋酸乙烯乳液粘度的影响,和引发剂的浓度对反应速率的影响,以及搅拌速度对聚合乳液的稳定性的影响,通过实验得出醋酸乙烯浆料聚合的适宜条件。  相似文献   

5.
影响丙烯酸酯类乳液聚合稳定性的因素及控制方法   总被引:2,自引:0,他引:2  
从单体的竞聚率及分配系数、聚合方法、加料方式、乳化剂、引发剂、反应温度、搅拌、pH值、电解质等九个方面论述了诸因素对丙烯酸酯类乳液聚合过程稳定性的影响及控制方法。  相似文献   

6.
高密度澄清池一种比较先进水处理工艺构筑物,它合理的利用了机械搅拌、加药助凝,污泥回流、斜管沉淀等技术对于低温低浊水的处理效果较好。同时占地面积小,水流条件好,反应效率高,耗药量少。  相似文献   

7.
可交联AA/AM反相乳液聚合的稳定性研究   总被引:2,自引:0,他引:2  
研究了乳化剂的种类及用量、交联剂含量、单体配比、pH值、搅拌速度等因素对AA/AM反相乳液稳定性的影响,结果表明:利用低HLB值油溶性的乳化剂,控制乳液pH>8.5,乳化搅拌速度>1000r/min,可合成出稳定的AA/AM反应乳液。  相似文献   

8.
采用反相乳液聚合技术制备高分子量的非离子型聚丙烯酰胺(PAM )乳液。单因素实验结果表明,最佳的工艺条件为:单体浓度4.92 mol/L ,引发剂浓度0.30%,乳化剂浓度6.94%,油水体积比1.2:1.0(环己烷做分散相),搅拌速率300 r/min,反应温度45℃。采用过硫酸钾-脲作为氧化还原引发体系可以获得较理想的PA M乳液,Span60和Tween80混合物是聚丙烯酰胺乳液制备的最佳乳化剂。  相似文献   

9.
为了得到用磷肥厂副产品氟硅酸和碳酸氢铵为原料制备白炭黑最佳工艺,用正交试验法研究了反应温度、配料比、搅拌速度、加料方式等对产品白炭黑比表面积和吸油值的影响情况。实验结果表明,原料配比和加料方式是影响产品的主要因素,最佳的工艺条件为反应温度80℃,原料配比6.2:1,搅拌速度200rpm,加料方式采用以氟硅酸为底液,NH4HCO3 30分钟滴加完。在此条件下制得的白炭黑,比表面积大于235m^2/g,吸油值达到国标GB10517—89技术指标要求。平行实验结果表明,该最佳工艺条件具有良好的重现性。  相似文献   

10.
无皂乳液种子聚合法研制高固含量乳胶   总被引:3,自引:0,他引:3  
本文采用无皂乳液聚合制备种子,进而制出高固含量的乳胶。考察了引进剂、乳化剂的用量,原料配比及搅拌转速对服民胶性能和固含量的影响。  相似文献   

11.
反相微小乳液合成速溶高分子量聚丙烯酸钠   总被引:1,自引:0,他引:1  
以聚异丁烯丁二酰亚胺、十二烷基硫酸钠为乳化剂,采用反相微小乳液法合成了速溶高分子量聚丙烯酸钠.研究了乳化剂和pH值对聚合体系稳定性的影响以及(NH4)2S2O8—甲基丙烯酸—N、N—二甲氨基乙酯(DMAEMA)—NaHSO3引发剂、单体浓度、烯丙醇对聚合物性能的影响.结果表明,最佳的实验条件:pH值等于10;乳化剂用量为5%(油相);引发剂浓度分别为0.06%、0.04%、0.02%(W单体);烯丙醇的浓度为0.08%(W单体);单体浓度为40%(水相).在最佳实验条件下,合成聚合物分子量超过2×107,且溶解性能优于溶液聚合和反相悬浮聚合所得产品.  相似文献   

12.
用熔体发泡法制备纯铝基泡沫铝.采取快速搅拌加发泡剂的方法,解决了在高于纯铝熔点温度下,发泡剂分解速度快而不利于均匀混合到熔体中的难点;重点研究了发泡时间对制得的纯铝基泡沫铝质量的影响.研究表明,制备质量优良的纯铝基泡沫铝材料的最佳工艺条件为:增黏剂金属钙的加入量为2%~3%;增黏搅拌时间为4~5 min;发泡剂的加入量为1.0%~1.5%;加发泡剂时熔体的温度为690~700℃;搅拌速度为1500~1800 r/min,搅拌时间为3 min,发泡剂控制在1.5 min内加完,发泡时间为4~5 min;自然冷却法冷却.压缩性能的检测结果表明,纯铝基泡沫铝的压缩强度比Al-Si合金泡沫铝的压缩强度...  相似文献   

13.
研究了去除土霉素药渣中残留有效成分的方法,探讨了盐酸、氧化钙、甲醇及加热温度对去除土霉素药渣中残留有效成分的影响因素,确定了最佳条件.药渣经2.0 mol/L盐酸浸泡,95℃水浴加热搅拌,放置至室温,加甲醇,搅拌、抽滤,滤渣加蒸馏水混匀,用CaO调pH为5.0,95℃水浴搅拌,过滤,滤渣95℃烘干.处理后的土霉素滤渣的效价平均结果为430.0 U/g,消除率可达96.9%.  相似文献   

14.
为改进国内液体鞋油产品的质量,研制出用直接乳化蜡溶液,配以天然树脂M和合成树脂N,并添加各种助剂的工艺。结果表明:工艺技术是可行的,产品具有较好的自亮度和保护皮革的性能。  相似文献   

15.
自交联型丙烯酸酯乳液共聚反应稳定性的研究   总被引:6,自引:0,他引:6  
本文对影响自交联型丙烯酸酯乳液共聚反应稳定性的各种因素如引发剂和乳化剂浓度、温度、交联单体用量、加料方式等进行了探讨  相似文献   

16.
用脂肪酸和三甲胺水溶液中和,再与环氧氯丙烷进行酯化,合成一种新的阳离子表面活性剂,用该产品作为乳化剂对胜利100 ̄*道路沥青进行了乳化效果考察。试验结果表明,该乳化剂性能较好,与十八烷基三甲基氯化铵相当,但合成工艺简单,是一种比较有发展前途的阳离子表面活性剂。  相似文献   

17.
采用反相悬浮法、氧化还原引发体系,合成了直径达毫米级的聚丙烯酸钠吸水小球.应用FT-IR证实了小球的化学结构,用DSC研究了交联剂用量对小球玻璃化转变温度的影响.研究发现,m(氧化剂):m(还原剂)为1.0:1.2、用量为单体质量的1.0%、w(交联剂)为5%、w(油):w(水)为5~7、分散剂为单体质量的0.2%,搅拌速度为200~250r/min时,合成的小球粒径较大且均匀,粒径达2.48mm,吸水后的小球直径可达10mm左右.小球的玻璃化转变温度值随交联剂用量的增加而降低.  相似文献   

18.
聚丙烯(PP)因其优良性能广泛应用于诸多领域,但同时也有着韧性差,熔体强度低等缺点。而高熔体强度聚丙烯(HMSPP)是一种具有较高熔体强度、较好熔体弹性的聚丙烯树脂,它的发现拓展了聚丙烯在物理发泡、挤出涂布及热成型等领域的应用,多年来一直是聚烯烃研究工作的重点。本文以2,5-二甲基-2,5-双-(叔丁基过氧)己烷(DHBP)为引发剂,采用多官能团单体三羟甲基丙烷三丙烯酸酯(TMPTA)对市售聚丙烯(PP)进行接枝,同时加入支化促进剂二硫化四丁基秋兰姆(TBTDS)以提高接枝效率,成功制备了具有高熔体强度的聚丙烯并进行了配方优化。本文测定了接枝产物的熔体流动速率(MFR)及采用公式法计算熔体强度(MS)。通过红外光谱(IR)对所得高熔体强度聚丙烯的分子结构进行表征,结果表明单体已接枝在PP主链上,通过差示扫描量热法(DSC)、热重分析(TG)方法,对所得高熔体强度聚丙烯的热性能进行分析和表征,结果表明接枝产物的熔融温度没有显著变化,耐热温度有所上升。拉伸强度、弯曲强度、冲击强度等力学性能的测定结果表明接枝产物的力学性能有显著提高。  相似文献   

19.
提出了制取以硬脂酸为胶凝剂和以甲醇为消烟剂的固体醇燃料的最佳配方和工艺条件。其配方为:乙醇的质量分数为48%,硬脂酸的质量分数为2.8%,甲醇的质量分数为39.5%,氢氧化钠的质量分数为量0.4%,水的质量分数为9.3%。其工艺条件是:反应釜的水浴温度为72℃,机械搅拌转速为120r/min,硬脂酸的溶解时间为15min,加入甲醇后的混合时间为30min,加入氢氧化钠溶液后的反应与混合时间为40min。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号