首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
当氦原子处于基态((1s)^2组态)或第一激发态(1s2s、1s2p组态)时,其能量可用变分法计算,如果用变法计算氦原子第二激发态1s3p组态能量,则需要注意两个问题:一是由于氦原子第二激发态1s3p组态的两个电子处于不同的壳层,不能用计算基态能量中采用的单参数方法,同时,由于3P电子较远离原子核,对1s电子的影响较小,也没有必要用计算第一激发态中的双参数方法;二是要保证氦原子1s3p组态波函数与基态及第一激发态波函数的正交.基于以上两点,这里给出一种用变分法计算氦原子1s3P组态能量的具体方法,计算过程直观,计算结果与实验值相当接近.  相似文献   

2.
电子关联是目前原子结构研究中最重要的课题之一.本文利用乘以广义Lasuerre多项式作为单电子径向函数集,在一定的子空间内,用组态相互作用和微扰理论相结合的方法,计算了开壳层类锂原子基态和激发态2P,2D,2F,2G的能量和波函数.  相似文献   

3.
Fe^23+离子的能量和精细结构   总被引:4,自引:2,他引:2  
应用全实加关联方法计算了类锂Fe^23+离子的1s^2nl(l=s,p)组态的非相对论能量和波函数。非相对论能量用Rayleigh-Ritz变分法确定,包括动能修正、电子-电子接触项、轨道-轨道相互作用项以及Darwin项的相对论修正和质量极化项由全实加关联波函数的一阶微扰给出,量子电动力学修正由有效核电荷方法和类氢公式计算;给出了较高核电荷(Z=26)类锂体系1s^2nl(l=s,P)组态的电离能、激发能和1s^2np组态的精细结构劈裂。得到的理论结果与实验数据及物理规律符合的很好。  相似文献   

4.
利用变分原理,计算出锂原子(类锂离子)第一激发态能量,再用所得到的原子态波函数计算出LS耦合的第一激发态能级的精细结构,将计算结果与实验值比较,误差很小.  相似文献   

5.
用全实加关联波函数计算了类锂原子体系(核电荷3~10)的基态ls22s和激发态ls2nl(l=s,p,d,f;n≤5)的比质量移位.与实验数据及其它理论结果的比较表明,全实加关联方法适用于计算对电子关联效应特别敏感的物理量.  相似文献   

6.
交换相互作用和屏蔽参数对类锂原子能量的影响   总被引:15,自引:10,他引:5  
讨论了类锂原子内壳层电子和外壳层电子的交换相互作用和屏蔽效应,采用变分法计算类锂原子的基态能量,计算结果表明这些效应对Li,Be^+,B^2+基态能量的贡献约为6eV。  相似文献   

7.
利用Mathematica语言开发了一个用变分法计算氦原子激发态非相对论能量的程序,对氦原子1snl(n=2→6)组态的非相对论能量进行了变分计算,理论计算值与实验值相当接近.  相似文献   

8.
提出了多电子原子波函数中ns电子径向函数的一种构造方法,在此基础上利用变分法对氦原子1sns(n=2-5)组态、铍原子1s22sns(n=3-6)组态、碳原子1s22s22pns3P(n=3-6)态的非相对论能量进行了计算,并计算了其相对论修正值(包括质量修正、单体达尔文修正、双体达尔文修正、自旋-自旋接触相互作用修正、轨道-轨道相互作用修正),计算结果与实验值相当接近.  相似文献   

9.
用全实加关联 (FCPC)方法计算锂原子的高角动量激发态 1s2 nl (l =4,5 )的能量及其精细结构 .非相对论能量用Rayleigh Ritz变分法确定 ;相对论修正和质量极化效应用微扰论计算 ;在能级精细结构的计算中不仅考虑了自旋 轨道相互作用还计及自旋 其他轨道相互作用  相似文献   

10.
钠原子基态能量的计算   总被引:3,自引:3,他引:0  
运用对角和法则,导出钠原子(含类钠离子Z=11-14)基态(电子组态为1s22s22p63s1)的非相对论性能量的解析表达式.在考虑电子间交换相互作用以及内外壳层电子的不同屏蔽效应的基础上,再利用变分法计算能量值,计算结果与试验数据符合较好,误差小于0.45%.  相似文献   

11.
汞原子处于激发态时,有4种能级状态,只有63P1第一激发态容易观测,而较高激发态则不易观测本文介绍汞原子较高激发态的观测的实验方法.现象明显,效果很好.  相似文献   

12.
基于全相对论扭曲波(RDW)电子碰撞激发计算程序REIE06,系统计算了类氖Fe16+离子基态1s22s22p6 1S0的2p,2s和1s电子激发到高激发态1s22s22p5 ns,1s22s2p6 ns和1s2s22p6 ns(n=3,4,5,6,7,8,9,10)精细结构能级的碰撞激发截面,详细研究了碰撞激发截面随入射电子能量和主量子数n的变化规律,拟合了公式,总结了一些有意义的结论.  相似文献   

13.
本文用耦合簇理论中的CCSD(T)方法和二次组态相互作用中的QCISD(T)方法并结合aug-cc-pv5z基组对NH自由基的基态和激发态进行从头计算研究. 我们拟合出了NH自由基基态和低激发态的势能函数, 以得到势能函数为基础计算出了NH自由基相应态的光谱常数, 并与实验值进行比较, 发现误差比较小; 通过求解NH自由基基态及激发态的径向Schrödinger方程, 得到了NH自由基在转动量子数J=0时基态及低激发态的振动能级及离心畸变常数.  相似文献   

14.
采用密度泛函B3LYP方法在6-31G(d,p)基组水平上,优化了不同外电场下CH3F分子的基态稳定构型、电偶极矩和分子的总能量,并分析了CH3F分子从HOMO-2到LUMO+2轨道的能量变化,然后利用杂化CIS-DFT方法在同样的基组下计算了外电场下CH3F分子的前9个激发态的激发能、波长和振子强度,结果表明,在没有外电场的条件下,CH3F分子只有一个激发态不能够激发,从基态跃迁到第5激发态.在有外电场的作用下,总能量随外电场的增加先增加后减少,偶极矩随外电场的增加先减小后增大,其前线轨道的能量随外电场的增加变化不明显.另外,外电场对CH3F分子的激发波长也产生了一定影响.  相似文献   

15.
采用PM3半经验量子化学计算方法和组态相互作用方法(MECI) ,通过逐点改变俘精酸酐分子开关化学键的键长 ,成功计算了呋喃取代的俘精酸酐分子开环体和闭环体沿基态、第一单重激发态和第一三重激发态互变的势能变化曲线。计算结果表明 ,俘精酸酐分子在基态时 ,由于势能面不能重叠而不能发生变色反应 ;在第一单重激发态 ,有利于发生开环反应 ;在第一三重激发态时 ,有利于发生闭环反应 ;理论计算结果与实验结果相符。  相似文献   

16.
以自旋非对易为背景,研究了三维各向同性谐振子.将非对易效应看作微扰项,得到了基态和第一激发态能级的二级修正和波函数的一级修正.在得到的波函数中发现了自旋非对易引入了位形自由度和自旋自由度的纠缠,这是对易空间中完全没有的新现象.  相似文献   

17.
使用SAC/SAC-CI方法,利用D95++**、6-311++g**以及cc-PVTZ等基组,对HD分子的基态(X~1∑_g~+)、第二激发态(B~1∑_u~+)和第三激发态(C~1Π_u)的平衡结构和谐振频率进行了优化计算.通过对3个基组的计算结果的比较,得出了cc-PVTZ基组为三个基组中的最优基组的结论;使用cc-PVTZ基组,利用SAC的GSUM(Group Sum of Operators)方法对基态(X~1∑~+_g)、SAC-CI的GSUM方法对激发态(B~1∑_u~+)和(C~1Π_u)进行单点能扫描计算,用正规方程组拟合Murrell-Sorbie函数,得到了相应电子态的完整势能函数;从得到的势能函数计算了与基态(X~1∑_g~+)、第二激发态(B~1∑_u~+)和第三激发态(C~1Π_u)相对应的光谱常数(B_e,α_e,ω_e 和ω_eχ_e),结果与实验数据基本吻合.  相似文献   

18.
氢原子的量子理论   总被引:2,自引:0,他引:2  
阐述了表征氢原子内在属性的各种物理量的微观本质,证明氢原子系统的量子能量、系统内部电子的量子轨道动量及原子核和电子的量子相对距离均与原子系统所处的量子状态有关.当原子系统处于不同的量子状态时,上述量子物理量的取值完全不同.首次建立适合氢原子特性的量子算符代数理论.根据氢原子的量子哈密顿量表示,结合创新的量子算符代数理论,得到氢原子的能量、氢原子的基态能量、电子轨道角动量、氢原子的光谱常数等各种物理量的理论值.结果表明,氢原子的能量、氢原子的基态能量、氢原子的光谱常数均与氢原子中的原子核及电子的量子尺寸有关.氢原子的光谱常数与实验测定值完全符合.  相似文献   

19.
王济堂 《江西科学》2006,24(5):253-259
本文是作者“量子力学的新解释”数篇系列文章的第2篇。在第1篇即文献[1]的基础上,提出了新的量子观点、并用于对原子分立能级和量子概念的物理本质进行新的解释:指出原子内部可能存在尚未被认识的物理性质,是产生原子分立能级的原因,分立能级之间还是有连续能量存在。提出了“电子内力”、“粒子内力”、“综合内力”和“原子第一宇宙速度”等新假设,并用于重新计算具有连续能量的原子分立能级,计算数据与实验相符,说明计算所根据的理论是正确的。还为上述各种新的理论观点提供了实验根据。进一步的理论和实验方案将在以后的多篇论文中论述。  相似文献   

20.
采用密度泛函理论中的B3P86方法,在6-311++G(d,p)基组水平上,优化气相丙酮分子及带电离子的基态稳定几何构型,并用含时密度泛函理论(TD-DFT)方法,研究气相丙酮分子和离子的低激发态特性.结果表明:随着分子获得电子数目的增加,体系能量逐渐增加;S1激发态能量与基态能量差值ΔE减小;分子荧光波长急剧增加;电子跃迁轨道数减少.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号