首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 316 毫秒
1.
We investigated the effect of Al_2O_3 content on the viscosity of CaO–SiO_2–Al_2O_3–8wt%MgO–1wt%Cr_2O_3 (mass ratio of CaO/SiO_2is 1.0,and Al_2O_3 content is 17wt%–29wt%) slags.The results show that the viscosity of the slag increases gradually with increases in the Al_2O_3content in the range of 17wt%to 29wt%due to the role of Al_2O_3 as a network former in the polymerization of the aluminosilicate structure of the slag.With increases in the Al_2O_3 content from 17wt%to 29wt%,the apparent activation energy of the slags also increases from 180.85 to 210.23 k J/mol,which is consistent with the variation in the critical temperature.The Fourier-transform infrared spectra indicate that the degree of polymerization of this slag is increased by the addition of Al_2O_3.The application of Iida’s model for predicting the slag viscosity in the presence of Cr_2O_3 indicates that the calculated viscosity values fit well with the measured values when both the temperature and Al_2O_3 content are at relatively low levels,i.e.,the temperature range of 1673 to 1803 K and the Al_2O_3 content range of 17wt%–29wt%in CaO–SiO_2–Al_2O_3–8wt%MgO–1wt%Cr_2O_3 slag.  相似文献   

2.
An effective process for recycling lead from hazardous waste cathode ray tubes(CRTs) funnel glass through traditional lead smelting has been presented previously. The viscous behavior of the molten high lead slag, which is affected by the addition of funnel glass, plays a critical role in determining the production efficiency. Therefore, the viscosities of the CaO–SiO_2–"FeO"–12wt%ZnO–3wt%Al_2O_3 slags were measured in the current study using the rotating spindle method. The slag viscosity decreases as the CaO/SiO_2 mass ratio is increased from 0.8 to 1.2 and also as the FeO content is increased from 8wt% to 20wt%. The breaking temperature of the slag is lowered substantially by the addition of FeO, whereas the influence of the CaO/SiO_2 mass ratio on the breaking temperature is complex. The structural analysis of quenched slags using Fourier transform infrared(FTIR) spectroscopy and Raman spectroscopy reveals that the silicate network structure is depolymerized with increasing CaO/SiO_2 mass ratio or increasing FeO content. The [FeO_6]-octahedra in the slag melt increase as the CaO/SiO_2 mass ratio or the FeO content increases. This increase can further decrease the degree of polymerization(DOP) of the slag. Furthermore, the activation energy for viscous flow decreases both with increasing CaO/SiO_2 mass ratio and increasing FeO content.  相似文献   

3.
The effects of MgO and TiO2 on the viscosity, activation energy for viscous flow, and break-point temperature of titanium-bearing slag were studied. The correlation between viscosity and slag structure was analyzed by Fourier transform infrared (FTIR) spectroscopy. Subsequently, main phases in the slag and their content changes were investigated by X-ray diffraction and Factsage 6.4 software package. The results show that the viscosity decreases when the MgO content increases from 10.00wt% to 14.00wt%. Moreover, the break-point temperature increases, and the activation energy for viscous flow initially increases and subsequently decreases. In addition, with increasing TiO2 content from 5.00wt% to 9.00wt%, the viscosity decreases, and the break-point temperature and activation energy for viscous flow initially decrease and subsequently increase. FTIR analyses reveal that the polymerization degree of complex viscous units in titanium-bearing slag decreases with increasing MgO and TiO2 contents. The mechanism of viscosity variation was elucidated. The basic phase in experimental slags is melilite. Besides, as the MgO content increases, the amount of magnesia–alumina spinel in the slag increases. Similarly, the sum of pyroxene and perovskite phases in the slag increases with increasing TiO2 content.  相似文献   

4.
The effects of basicity and MgO content on the viscosity of SiO2-CaO-MgO-9wt%Al2O3 slags with basicity from 0.4 to 1.0 and MgO content from 13wt%to 19wt%were investigated using the rotating cylinder method. A correlation between the viscosity and the slag structure was determined by Fourier transform infrared (FTIR) spectroscopy. It is indicated that the complex network structure of the slag melt is depolymerized into simpler network units with increasing basicity or MgO content, resulting in a continuous decrease in viscosity of the slag. The viscosity is strongly dependent on the combined action of basic oxide components in the slag. Under the present experimental conditions, increasing the basicity is found to be more effective than increasing the MgO content in decreasing the viscosity of the slag. At higher temperatures, the increase of basicity or MgO content does not appreciably decrease the viscosity of the slag, as it does at lower tem-peratures. The calculated activation energy of viscous flow is between 154 and 200 kJ·mol-1, which decreases with an increase in basicity from 0.4 to 1.0 at a fixed MgO content in the range of 13wt%to 19wt%.  相似文献   

5.
The viscosity of CaF_2–CaO–Al_2O_3–MgO–(TiO_2) slag was measured using a rotating crucible viscometer. Raman spectroscopy analysis was performed to correlate the viscosity to slag structure. The viscosity of the slag was found to decrease with increasing TiO_2 content in the slag from 0 to 9.73wt%. The activation energy decreased from 95.16 kJ /mol to 79.40 kJ /mol with increasing TiO_2 content in the slag. The introduction of TiO_2 into the slag played a destructive role in Al–O–Al structural units and Q~4 units by forming simpler structural units of Q~2 and Ti_2O_6~(4-) chain. The amount of Al–O–Al significantly decreased with increasing TiO_2 content. The relative fraction of Q~4 units in the [AlO_4]~(5-)-tetrahedral units shows a decreasing trend, whereas the relative fraction of Q~2 units and Ti_2O_6~(4-) chain increases with increasing TiO_2 content accordingly. Consequently, the polymerization degree of the slag decreases with increasing TiO_2 content. The variation in slag structure is consistent with the change in measured viscosity.  相似文献   

6.
To investigate the flow of primary slag bearing TiO2 in the cohesive zone of blast furnaces,experiments were carried out based on the laboratory-scale packed bed systems.It is concluded that the initial temperature of slag dripping increases with decreasing FeO content and increasing TiO2 content.The slag holdup decreases when the FeO content is in the range of 5wt%-10wt%,whereas it increases when the FeO content exceeds 10wt%.Meanwhile,the slag holdup decreases when the TiO2 content increases from 5wt% to 10wt% but increases when the TiO2 content exceeds 10wt%.Moreover,slag/coke interface analysis shows that the reaction between FeO and TiO2 occurs between the slag and the coke.The slag/coke interface is divided into three layers:slag layer,iron-rich layer,and coke layer.TiO2 in the slag is reduced by carbon,and the generated Ti diffuses into iron.  相似文献   

7.
To investigate the flow of primary slag bearing TiO_2 in the cohesive zone of blast furnaces,experiments were carried out based on the laboratory-scale packed bed systems. It is concluded that the initial temperature of slag dripping increases with decreasing Fe O content and increasing TiO_2 content. The slag holdup decreases when the Fe O content is in the range of 5wt%–10wt%,whereas it increases when the Fe O content exceeds 10wt%. Meanwhile,the slag holdup decreases when the TiO_2 content increases from 5wt% to 10wt% but increases when the TiO_2 content exceeds 10wt%. Moreover,slag/coke interface analysis shows that the reaction between Fe O and TiO_2 occurs between the slag and the coke. The slag/coke interface is divided into three layers: slag layer,iron-rich layer,and coke layer. TiO_2 in the slag is reduced by carbon,and the generated Ti diffuses into iron.  相似文献   

8.
An effective process for recycling lead from hazardous waste cathode ray tubes (CRTs) funnel glass through traditional lead smelting has been presented previously. The viscous behavior of the molten high lead slag, which is affected by the addition of funnel glass, plays a critical role in determining the production efficiency. Therefore, the viscosities of the CaO-SiO2-"FeO"-12wt%ZnO-3wt%Al2O3 slags were measured in the current study using the rotating spindle method. The slag viscosity decreases as the CaO/SiO2 mass ratio is increased from 0.8 to 1.2 and also as the FeO content is increased from 8wt% to 20wt%. The breaking temperature of the slag is lowered substantially by the addition of FeO, whereas the influence of the CaO/SiO2 mass ratio on the breaking temperature is complex. The structural analysis of quenched slags using Fourier transform infrared (FTIR) spectroscopy and Raman spectroscopy reveals that the silicate network structure is depolymerized with increasing CaO/SiO2 mass ratio or increasing FeO content. The[FeO6]-octahedra in the slag melt increase as the CaO/SiO2 mass ratio or the FeO content increases. This increase can further decrease the degree of polymerization (DOP) of the slag. Furthermore, the activation energy for viscous flow decreases both with increasing CaO/SiO2 mass ratio and increasing FeO content.  相似文献   

9.
Investigating the reaction mechanism between slag and 9CrMoCoB steel is important to develop the proper slag and produce qualified ingots in the electroslag remelting(ESR) process. Equilibrium reaction experiments between molten 9CrMoCoB steel and the slags of 55 wt%CaF2–20 wt%CaO–3 wt%MgO–22 wt%Al2O3–xwt%B2O3(x = 0.0, 0.5, 1.0, 1.5, 2.0, 3.0) were conducted. The reaction mechanisms between molten 9 CrMoCoB steel and the slags with different B2O3 contents were deduced based on the composition of the steel and slag samples at different reaction times. Results show that B content in the steel can be controlled within the target range when the B2O3 content is 0.5 wt% and the FeO content ranges from 0.18 wt% to 0.22 wt% in the slag. When the B2O3 content is ≥1 wt%, the reaction between Si and B2O3 leads to the increase of the B content of steel. The additions of SiO2 and B2O3 to the slag should accord to the mass ratio of [B]/[Si] in the electrode, and SiO2 addition inhibits the reaction between Si and Al2O3.  相似文献   

10.
Experimental studies on the rheological properties of a CaO–SiO2–Al2O3–MgO–TiO2–(TiC) blast furnace (BF) slag system were conducted using a high-temperature rheometer to reveal the non-Newtonian behavior of heterogeneous titanium-bearing molten slag. By measuring the relationships among the viscosity, the shear stress and the shear rate of molten slags with different TiC contents at different temperatures, the rheological constitutive equations were established along with the rheological parameters; in addition, the non-Newtonian fluid types of the molten slags were determined. The results indicated that, with increasing TiC content, the viscosity of the molten slag tended to increase. If the TiC content was less than 2wt%, the molten slag exhibited the Newtonian fluid behavior when the temperature was higher than the critical viscosity temperature of the molten slag. In contrast, the molten slag exhibited the non-Newtonian pseudoplastic fluid characteristic and the shear thinning behavior when the temperature was less than the critical viscosity temperature. However, if the TiC content exceeded 4wt%, the molten slag produced the yield stress and exhibited the Bingham and plastic pseudoplastic fluid behaviors when the temperature was higher and lower than the critical viscosity temperature, respectively. When the TiC content increased further, the yield stress of the molten slag increased and the shear thinning phenomenon became more obvious.  相似文献   

11.
研究了MgO含量变化对CaO-Al2O3-MgO-FexO-SiO2-K2O系熔体黏度和熔化特性的影响,结合X射线衍射和扫描电镜分析熔渣冷却过程中的物相析出,并通过FactSage软件计算了该体系的黏度、熔点和冷却过程中析出相的含量与温度的关系,并与实验结果进行了对比和分析.结果表明,MgO含量的增多会造成熔渣熔化温度的升高,黏度随温度变化时会出现黏度骤增的转折点,高于转折点温度时,熔渣黏度随MgO含量变化不大,同时该转折点温度随MgO含量的增加而升高.在熔渣冷却过程中析出相主要为固溶的橄榄石相和Fe3O4尖晶石相,MgO含量的增大可以促进橄榄石相的析出,熔体黏度骤增主要由于橄榄石相的析出造成的.  相似文献   

12.
A study on the melting and viscosity properties of the chromium-containing high-titanium melting slag (CaO–SiO2–MgO–Al2O3–TiO2–Cr2O3) with TiO2 contents ranging from 38.63wt% to 42.63wt% was conducted. The melting properties were investigated with a melting-point apparatus, and viscosity was measured using the rotating cylinder method. The FactSage 7.1 software and X-ray diffraction, in combination with scanning electron microscopy–energy-dispersive spectroscopy (SEM–EDS), were used to characterize the phase equilibrium and microstructure of chromium-containing high-titanium melting slags. The results indicated that an increase in the TiO2 content led to a decrease in the viscosity of the chromium-containing high-titanium melting slag. In addition, the softening temperature, hemispheric temperature, and flowing temperature decreased with increasing TiO2 content. The amount of crystallized anosovite and sphene phases gradually increased with increasing TiO2 content, whereas the amount of perovskite phase decreased. SEM observations revealed that the distribution of the anosovite phase was dominantly influenced by TiO2.  相似文献   

13.
CaO-SiO_2-Na_2O-CaF_2-Al_2O_3-MgO渣系的粘度和结晶温度   总被引:3,自引:3,他引:3  
采用CaOSiO2Na2OCaF2Al2O3MgO渣系,用差热分析仪测定熔渣的结晶温度,用粘度测定仪测定熔渣的粘度,研究结晶温度和粘度与碱度、w(Na2CO3)、w(CaF2)、w(Al2O3)和w(MgO)之间的关系,并得到相应的回归方程·利用这两个回归方程,可以预测连铸保护渣的结晶性能和粘性特征·化学成分通过改变粘度,来影响晶核形成速度和晶体成长速度,从而决定了熔渣的结晶性能·结晶温度随着粘度的减小而升高·渣系中只有MgO可以在减小粘度的同时降低结晶温度  相似文献   

14.
利用Roscoe方程,结合FactSage的多元多相平衡计算和纯液相渣黏度计算功能可对含固相熔渣的黏度进行计算.本研究针对基于铜冶炼渣的FeO-SiO2-Fe3O4-CaO-Al2O3-MgO系,首先根据相似炉渣的黏度测定值对Roscoe方程中的参数进行拟合,同时验证了该方法在计算所研究体系时的准确性.基于所得的计算模型考察不同组分含量对平衡相组成及黏度的影响规律,并总结获得合理的渣型配比.当炉渣中各组分的质量分数分别控制在FeO 40%~60%、SiO225% ~ 40%、Fe3O40%~15%、CaO 0% ~ 10%、A12O30%~8%和MgO 0% ~4%时,可在冶炼过程中得到流动性较好、固体量较少的熔渣.  相似文献   

15.
An effective process for recycling lead from hazardous waste cathode ray tubes (CRTs) funnel glass through traditional lead smelting has been presented previously. The viscous behavior of the molten high lead slag, which is affected by the addition of funnel glass, plays a critical role in determining the production efficiency. Therefore, the viscosities of the CaO–SiO2–"FeO"–12wt%ZnO–3wt%Al2O3 slags were measured in the current study using the rotating spindle method. The slag viscosity decreases as the CaO/SiO2 mass ratio is in-creased from 0.8 to 1.2 and also as the FeO content is increased from 8wt% to 20wt%. The breaking temperature of the slag is lowered sub-stantially by the addition of FeO, whereas the influence of the CaO/SiO2 mass ratio on the breaking temperature is complex. The structural analysis of quenched slags using Fourier transform infrared (FTIR) spectroscopy and Raman spectroscopy reveals that the silicate network structure is depolymerized with increasing CaO/SiO2 mass ratio or increasing FeO content. The [FeO6]-octahedra in the slag melt increase as the CaO/SiO2 mass ratio or the FeO content increases. This increase can further decrease the degree of polymerization (DOP) of the slag. Furthermore, the activation energy for viscous flow decreases both with increasing CaO/SiO2 mass ratio and increasing FeO content.  相似文献   

16.
通过对低碳含铝钢20Mn2精炼过程的取样分析,得出精炼渣的熔化温度偏高,渣中存在大量固相CaO,并导致钢中含有CaO类夹杂物,精炼渣吸附夹杂物能力差. 利用FactSage热力学计算,从渣的低熔点区域控制和渣-钢反应这两个方面对渣系进行研究与优化. 结果表明,CaO/Al2 O3 质量比在1. 5左右添加质量分数为3% CaF2 可以有效降低渣的熔化温度,渣的熔化温度随着CaF2 含量的升高呈现先降低后升高的趋势,MgO的质量分数控制5%左右低熔点区域面积达到最大. 在SiO2 质量分数大于30%区域,钢中氧含量大体上随着CaO/Al2 O3 质量比的增加而降低,在SiO2 的质量分数低于30%区域随着CaO含量的升高而降低,钢中酸溶铝含量在SiO2 含量高的区域随着Al2 O3/SiO2 质量比的增加而升高,在SiO2 含量低的区域随着CaO/SiO2 质量比的增加而增加. 根据热力学分析结果得出合理的渣系范围:CaO 50% ~60%, Al2 O3 20% ~35%, SiO2 5% ~10%, MgO 5% ~8%, CaF2 0~5%. 优化渣系的实验结果表明,优化后渣系熔化温度降低,钢中夹杂物数量、面积和平均尺寸均有明显下降.  相似文献   

17.
The viscosity of CaF2–CaO–Al2O3–MgO–(TiO2) slag was measured using a rotating crucible viscometer. Raman spectroscopy analysis was performed to correlate the viscosity to slag structure. The viscosity of the slag was found to decrease with increasing TiO2 con-tent in the slag from 0 to 9.73wt%. The activation energy decreased from 95.16 kJ/mol to 79.40 kJ/mol with increasing TiO2 content in the slag. The introduction of TiO2 into the slag played a destructive role in Al–O–Al structural units and Q4 units by forming simpler structural units of Q2 and426TiO- chain. The amount of Al–O–Al significantly decreased with increasing TiO2 content. The relative fraction of4Q units in the [AlO4]5?-tetrahedral units shows a decreasing trend, whereas the relative fraction of2Q units and426TiO- chain increases with increasing TiO2 content accordingly. Consequently, the polymerization degree of the slag decreases with increasing TiO2 content. The varia-tion in slag structure is consistent with the change in measured viscosity.  相似文献   

18.
The electrorheological properties of CaO–SiO2–Al2O3–MgO–TiO2–TiC slags were investigated to enhance understanding of the effect of TiC addition on the viscosity, yield stress, and fluid pattern of Ti-bearing slags in a direct-current electric field. The viscosities and shear stresses of 4wt% and 8wt% TiC slags were found to increase substantially with increasing electric field intensity, whereas virtually no rheological changes were observed in the 0wt% TiC slag. The Herschel–Bulkley model was applied to demonstrate that the fluid pattern of the 4wt% TiC slag was converted from that of a Newtonian fluid to that of a Bingham fluid in response to the applied electric field; and the static yield stress increased linearly with the square of the electric field intensity.  相似文献   

19.
结合高效脱磷能力的熔融还原冶炼惠民高磷铁矿工艺及HIsmelt熔融还原炼铁技术的特点选取CaO-MgO-FeO-Al2O3-SiO2-P2O5六元熔渣作为研究对象其熔渣成分为:二元碱度R(CaO/SiO2)0.8~1.4Al2O3质量分数为6.4%~15.4%P2O5质量分数为0~3%、MgO、FeO质量分数分别为4%、6%采用纯化学试剂配制熔渣。借助扫描电子显微镜对炉渣矿物组成和微观结构进行研究采用RTW-10熔体物性综合测试仪研究熔渣成分的变化对黏度产生的影响。研究表明:该熔渣矿相结构主要以黄长石(钙铝黄长石、钙镁黄长石)为主呈方形状、粗大骨架状结构。当P2O5或Al2O3质量分数一定时随着碱度的提高熔渣的黏度降低;当碱度或P2O5质量分数一定时熔渣的黏度随Al2O3质量分数的增加而增大;当碱度或Al2O3质量分数一定时黏度均随着P2O5质量分数的增加而提高。  相似文献   

20.
To design optimal pyrometallurgical processes for nickel and cobalt recycling, and more particularly for the end-of-life process of Ni–Co–Fe-based end-of-life (EoL) superalloys, knowledge of their activity coefficients in slags is essential. In this study, the activity coeffi-cients of NiO and CoO in CaO–Al2O3–SiO2 slag, a candidate slag used for the EoL superalloy remelting process, were measured using gas/slag/metal equilibrium experiments. These activity coefficients were then used to consider the recycling efficiency of nickel and cobalt by remelting EoL superalloys using CaO–Al2O3–SiO2 slag. The activity coefficients of NiO and CoO in CaO–Al2O3–SiO2 slag both show a positive deviation from Raoult’s law, with values that vary from 1 to 5 depending on the change in basicity. The activity coefficients of NiO and CoO peak in the slag with a composition near B = (%CaO)/(%SiO2) = 1, whereB is the basicity. We observed that controlling the slag composition at approximatelyB = 1 effectively reduces the cobalt and nickel oxidation losses and promotes the oxidation removal of iron during the remelting process of EoL superalloys.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号