首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
2.
3.
4.
5.
6.
Kimchi T  Xu J  Dulac C 《Nature》2007,448(7157):1009-1014
In mice, pheromone detection is mediated by the vomeronasal organ and the main olfactory epithelium. Male mice that are deficient for Trpc2, an ion channel specifically expressed in VNO neurons and essential for VNO sensory transduction, are impaired in sex discrimination and male-male aggression. We report here that Trpc2-/- female mice show a reduction in female-specific behaviour, including maternal aggression and lactating behaviour. Strikingly, mutant females display unique characteristics of male sexual and courtship behaviours such as mounting, pelvic thrust, solicitation, anogenital olfactory investigation, and emission of complex ultrasonic vocalizations towards male and female conspecific mice. The same behavioural phenotype is observed after VNO surgical removal in adult animals, and is not accompanied by disruption of the oestrous cycle and sex hormone levels. These findings suggest that VNO-mediated pheromone inputs act in wild-type females to repress male behaviour and activate female behaviours. Moreover, they imply that functional neuronal circuits underlying male-specific behaviours exist in the normal female mouse brain.  相似文献   

7.
Towards a resolution of the lek paradox   总被引:13,自引:0,他引:13  
Kotiaho JS  Simmons LW  Tomkins JL 《Nature》2001,410(6829):684-686
Genetic benefits in the shape of 'good genes' have been invoked to explain costly female choice in the absence of direct fitness benefits. Little genetic variance in fitness traits is expected, however, because directional selection tends to drive beneficial alleles to fixation. There seems to be little potential, therefore, for female choice to result in genetic benefits, giving rise to the 'lek paradox'. Nevertheless, evidence shows that genetic variance persists despite directional selection and genetic benefits of female choice are frequently reported. A theoretical solution to the lek paradox has been proposed on the basis of two assumptions: that traits are condition-dependent, and that condition shows high genetic variance. The observed genetic variability in sexual traits will be accounted for, because a proportion of the genetic variance in condition will be captured and expressed in the trait. Here we report results from experiments showing that male courtship rate in the dung beetle Onthophagus taurus is a condition-dependent trait that is preferred by females. More importantly, male condition has high genetic variance and is genetically correlated with courtship rate. Our results thereby represent a significant step towards a resolution of the lek paradox.  相似文献   

8.
Mendelson TC  Shaw KL 《Nature》2005,433(7024):375-376
Theory predicts that sexual behaviour in animals can evolve rapidly, accelerating the rate of species formation. Here we estimate the rate of speciation in Laupala, a group of forest-dwelling Hawaiian crickets that is characterized primarily through differences in male courtship song. We find that Laupala has the highest rate of speciation so far recorded in arthropods, supporting the idea that divergence in courtship or sexual behaviour drives rapid speciation in animals.  相似文献   

9.
Learning through trial-and-error interactions allows animals to adapt innate behavioural ‘rules of thumb’ to the local environment, improving their prospects for survival and reproduction. Naive Drosophila melanogaster males, for example, court both virgin and mated females, but learn through experience to selectively suppress futile courtship towards females that have already mated. Here we show that courtship learning reflects an enhanced response to the male pheromone cis-vaccenyl acetate (cVA), which is deposited on females during mating and thus distinguishes mated females from virgins. Dissociation experiments suggest a simple learning rule in which unsuccessful courtship enhances sensitivity to cVA. The learning experience can be mimicked by artificial activation of dopaminergic neurons, and we identify a specific class of dopaminergic neuron that is critical for courtship learning. These neurons provide input to the mushroom body (MB) γ lobe, and the DopR1 dopamine receptor is required in MBγ neurons for both natural and artificial courtship learning. Our work thus reveals critical behavioural, cellular and molecular components of the learning rule by which Drosophila adjusts its innate mating strategy according to experience.  相似文献   

10.
鸣禽的鸣叫行为具有明显雄雌差异,一些鸣禽只有雄性可以鸣叫,而雌性却不能,这种行为上的差异是由中枢神经系统的双态性所决定的,鸣禽鸣转系统性别分化的方式与经典的性别分化方式不同,雌激素起重要作用,结合近年来国内外的研究进展,介绍了脑性别分化与鸣叫行为的若干控制因素。  相似文献   

11.
笼养下红胸角雉(Tragopan satyra)繁殖行为的研究   总被引:1,自引:1,他引:0  
笼养下的红胸角雉(Tragopan satyra)雌鸟在繁殖期的活动比雌鸟强,在早晚存在2个高峰,但雌鸟和雄鸟在中午都存在1个休息的高峰.雌鸟的取食行为在繁殖期较雄性强.繁殖期的雄鸟具有较强的领域行为.雄鸟的求偶炫耀过程可以分为6个步骤.各步所需时间及肉裙特征与黄腹角雉和红腹角雉不同.  相似文献   

12.
Control of neuronal fate by the Drosophila segmentation gene even-skipped   总被引:10,自引:0,他引:10  
C Q Doe  D Smouse  C S Goodman 《Nature》1988,333(6171):376-378
The central nervous system (CNS) contains a remarkable diversity of cell types. The molecular basis for generating this neuronal diversity is poorly understood. Much is known, however, about the regulatory genes which control segmentation and segment identity during early Drosophila embryogenesis. Interestingly, most of the segmentation and homoeotic genes in Drosophila, as well as many of their vertebrate homologues, are expressed during the development of the nervous system (for example, ref. 3). Are these genes involved in specifying the identity of individual neurons during neurogenesis, just as they specify the identity of cells during segmentation? We previously described the CNS expression of the segmentation gene fushi tarazu (ftz) and showed that ftz CNS expression is involved in the determination of an identified neuron. Here we show that another segmentation gene, even-skipped (eve), is expressed in a different but overlapping subset of neurons. Temperature-sensitive inactivation of the eve protein during neurogenesis alters the fate of two of these neurons. Our results indicate that the nuclear protein products of the eve and ftz segmentation genes are components of the mechanism controlling cell fate during neuronal development.  相似文献   

13.
14.
Ruta V  Datta SR  Vasconcelos ML  Freeland J  Looger LL  Axel R 《Nature》2010,468(7324):686-690
Drosophila show innate olfactory-driven behaviours that are observed in naive animals without previous learning or experience, suggesting that the neural circuits that mediate these behaviours are genetically programmed. Despite the numerical simplicity of the fly nervous system, features of the anatomical organization of the fly brain often confound the delineation of these circuits. Here we identify a neural circuit responsive to cVA, a pheromone that elicits sexually dimorphic behaviours. We have combined neural tracing using an improved photoactivatable green fluorescent protein (PA-GFP) with electrophysiology, optical imaging and laser-mediated microlesioning to map this circuit from the activation of sensory neurons in the antennae to the excitation of descending neurons in the ventral nerve cord. This circuit is concise and minimally comprises four neurons, connected by three synapses. Three of these neurons are overtly dimorphic and identify a male-specific neuropil that integrates inputs from multiple sensory systems and sends outputs to the ventral nerve cord. This neural pathway suggests a means by which a single pheromone can elicit different behaviours in the two sexes.  相似文献   

15.
O'Donald P 《Nature》1977,267(5607):151-154
Models of sexual selection in polygynous species of animals have been derived on the assumption that some females have preferences to mate with males with particular genotypes. The mating advantage gained by the males is always frequency-dependent because the preferred males take part in the same number of preferential matings when they are rare as when they are common; individually therefore, they mate more often when they are rare. Frequency-dependent sexual selection has been demonstrated in many experiments with Drosophila: rare males take part in a higher proportion of matings than their frequency as available mates. Ehrman and Spiess explained this phenomenon by frequency-dependence either in female preference or in male courtship. This explanation, which is difficult to interpret in behavioural terms, may not be necessary, however, because constant female preferences would entail frequency-dependent selection among the males. I show here that a simple model of constant preferences for particular phenotypes or genotypes is sufficient to explain a large body of data on frequency-dependent sexual selection in Drosophila.  相似文献   

16.
Suh GS  Wong AM  Hergarden AC  Wang JW  Simon AF  Benzer S  Axel R  Anderson DJ 《Nature》2004,431(7010):854-859
All animals exhibit innate behaviours in response to specific sensory stimuli that are likely to result from the activation of developmentally programmed neural circuits. Here we observe that Drosophila exhibit robust avoidance to odours released by stressed flies. Gas chromatography and mass spectrometry identifies one component of this 'Drosophila stress odorant (dSO)' as CO2. CO2 elicits avoidance behaviour, at levels as low as 0.1%. We used two-photon imaging with the Ca2+-sensitive fluorescent protein G-CaMP to map the primary sensory neurons governing avoidance to CO2. CO2 activates only a single glomerulus in the antennal lobe, the V glomerulus; moreover, this glomerulus is not activated by any of 26 other odorants tested. Inhibition of synaptic transmission in sensory neurons that innervate the V glomerulus, using a temperature-sensitive Shibire gene (Shi(ts)), blocks the avoidance response to CO2. Inhibition of synaptic release in the vast majority of other olfactory receptor neurons has no effect on this behaviour. These data demonstrate that the activation of a single population of sensory neurons innervating one glomerulus is responsible for an innate avoidance behaviour in Drosophila.  相似文献   

17.
对鸣禽燕雀前脑、中脑和延髓的四个发声控制核团进行了测量。结果发现:前脑HV_c,RA核团的体积存在着明显的性别差异,雄鸟核团均大于雌鸟。中脑IC_o核与延髓的IM核无明显性双态性。这表明,造成燕雀鸣啭能力的性别差异主要是由前脑高位中枢的性双态所决定的。  相似文献   

18.
M Konishi  E Akutagawa 《Nature》1985,315(6015):145-147
The song control nuclei of the zebra finch brain contain more neurones of larger diameter in the male than in the female. This sexual dimorphism is thought to result from differential growth of neurones in the two sexes. Using neurohistological techniques and radioactive tracers, we have studied the development of several forebrain nuclei involved in the control of song and find that the dimorphism arises from neuronal atrophy and death in the female brain as well as from an increase in cell-body size and afferent terminals from other forebrain nuclei in the male. Although the timing of these events varies from nucleus to nucleus, the sequence is essentially similar in all of them except area X. Here we describe the events in one of these nuclei, the robust nucleus of archistriatum (RA), as an example.  相似文献   

19.
Millonig JH  Millen KJ  Hatten ME 《Nature》2000,403(6771):764-769
In the vertebrate central nervous system (CNS), a cascade of signals that originates in the ectoderm adjacent to the neural tube is propagated by the roof plate to dorsalize the neural tube. Here we report that the phenotype of the spontaneous neurological mutant mouse dreher (dr) results from a failure of the roof plate to develop. Dorsalization of the neural tube is consequently affected: dorsal interneurons in the spinal cord and granule neurons in the cerebellar cortex are lost, and the dorsal vertebral neural arches fail to form. Positional cloning of dreher indicates that the LIM homeodomain protein, Lmx1a, is affected in three different alleles of dreher. Lmx1a is expressed in the roof plate along the neuraxis during development of the CNS. Thus, Lmx1a is required for development of the roof plate and, in turn, for specification of dorsal cell fates in the CNS and developing vertebrae.  相似文献   

20.
利用离体脑片膜片钳技术检测RA投射神经元电生理活动的主动和被动特性,对其性别差异进行探讨.结果发现鸣禽RA投射神经元电生理特性在发放频率和诱发动作电位幅值方面存在明显的性别差异.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号