首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
采用SBR法处理麻生物脱胶废水的研究   总被引:5,自引:0,他引:5  
采用序批式活性污泥法(SBR)处理麻生物脱胶废水,与传统方法相比,废水中的COD、SS显著减少,且占地面积小、耐冲击负荷、污泥产生量少、能有效抑制丝状菌繁殖。当进水COD浓度为582.2~1665.7mg/L、进水SS浓度为106~915ml/L时,COD去除率为62.8%~86.9%,SS去除率为61.3%~88.6%。研究表明,进水[COD]在1000mg/L以下,宜采用限制性曝气;[COD]在1000mg/L以上,宜采用非限制性曝气。研究了一级生物降解反应动力学,得到了动力学常数K1和不可降解有机物浓度,模拟数与试验数据吻合良好。  相似文献   

2.
采用阳极等离子体电解处理高盐废水中的苯酚.研究了阳极等离子体产生的条件,以及废水中盐的浓度、苯酚的质量浓度和处理时间对废水中COD去除率的影响.实验结果表明,在苯酚质量浓度为0.2g·L-1,NaCl浓度为0.4mol·L-1的溶液中,施加90V槽电压,处理10min,苯酚的去除率达100%;处理20min,废水的COD值从0.464g·L-1降到0.010g·L-1,COD去除率可达97.8%.探讨了阳极等离子体电解处理高盐废水中苯酚的机理.  相似文献   

3.
考察了竹炭用量、微生物菌液用量、进水COD浓度、pH值、DO、HRT等因素对模拟废水COD去除效果的影响,研究竹炭-微生物联合法去除沼液中COD的反应动力学;同时进行了与竹炭吸附和单纯生物降解的对比试验,探讨了竹炭-微生物联合法处理沼液的交互效应.结果表明,竹炭用量、微生物菌液用量、进水COD浓度、pH值、DO等因素均不同程度地影响COD的去除效果,竹炭-微生物法去除废水中COD的最优条件推荐为:竹炭用量30.00g/L,微生物活性液用量2%,pH值6.0~8.0,DO质量浓度1.70~2.00mg/L,HRT为48h.竹炭-微生物法对废水中COD的去除过程符合一级反应动力学模型,竹炭-微生物法对COD的去除效果优于竹炭吸附和单纯的生物降解,竹炭与生物降解的协同作用为50.35%.  相似文献   

4.
好氧法处理抗生素废水对比试验研究   总被引:1,自引:0,他引:1  
通过对比分析3种好氧活性污泥法的试验结果,表明用SBR运行工艺处理土霉素、庆大霉素发酵废水可实现高进水浓度、高容积负荷的工程处理效果:处理工艺在连续曝气、连续进出水(即普通曝气法)条件下,COD平均去除率为79.5%(进水COD浓度537.4~663.1mg.L-1,平均出水COD为128.6mg.L-1);在间断曝气、曝气期内连续进水连续出水(即间断曝气法)条件下,COD平均去除率为72.7%(进水COD浓度537.4~1544.0mg.L-1,平均出水COD浓度为315.5mg.L-1);在间歇曝气、定时进水出水(即SBR法)试验条件下,COD去除率可达78.7%~88.4%(进水COD浓度1600~12000mg.L-1,出水COD浓度357.3~2500mg.L-1).  相似文献   

5.
采用内电解预处理,研究组合工艺上流式厌氧污泥床(UASB)-A/O2下污染物转化降解特性.结果表明:最佳工况条件下,当进水化学需氧量(COD)和酚质量浓度分别为2 500 mg·L-1和320.0 mg·L-1时,最终出水COD低于150mg·L-1,酚质量浓度小于0.1 mg· L-1.气质联仪(GCMS)分析表明:内电解预处理可降解杂环化合物、降低废水的毒性,有利于后续生化处理;UASB能有效地将焦化废水中的多支链酚类转化为结构相对简单的酚类,对喹啉类化合物有较高的去除率;经过缺氧和接触氧化处理后,出水有机物种类大量减少.  相似文献   

6.
采用铁碳微电解对直接黄11废水进行预处理,考察了p H、反应时间和温度对处理效果的影响。通过正交实验确定最佳处理参数为:p H=2,反应时间2 h,温度为40℃。在最佳工况下COD去除率可达65%以上,色度去除率达92%以上。处理过程的紫外光谱分析结果表明,铁碳微电解能氧化断开普通共轭结构,较大程度提高废水的可生化性。通过对COD和色度的动力学分析表明,铁碳微电解降解直接黄11废水过程为一级动力学反应,相应的速率常数分别为0.223 h~(-1)和0.778 h~(-1)。  相似文献   

7.
微电解-Fenton氧化处理难降解蒽醌染整废水试验   总被引:8,自引:0,他引:8  
蒽醌染整废水的COD质量浓度ρ(COD)为750~850 mg.L-1,色度400~500倍,ρ(BOD5)/ρ(COD)为0.10~0.13,属难生化处理废水.采用微电解-Fenton试剂催化氧化组合工艺对该废水进行处理,研究探讨该处理过程各种反应条件和工艺参数对处理效果的影响,以及难降解有机物的转化途径.当微电解柱铁炭体积比1∶1,进水pH值4.0,反应时间2.0 h,Al2(SO4)3投加量150 mg.L-1,助凝剂PAM投加量3 mg.L-1,沉淀时间30 min时,微电解-混凝沉淀处理出水的ρ(COD)为208~342 mg.L-1,ρ(BOD5)为17~30 mg.L-1,色度15~40倍;后续处理采用Fenton试剂催化氧化,当FeSO4投加量200 mg.L-1,H2O2投加量100 mg.L-1,pH值5.0,反应时间30 min时,处理出水的ρ(COD)≤50 mg.L-1,ρ(BOD5)≤10 mg.L-1,色度≤20倍数.  相似文献   

8.
超声氧化-SBR法处理拟除虫菊酯类农药化工废水   总被引:1,自引:1,他引:0  
采用超声氧化-间歇式活性污泥(sequencing batch reactor activated sludge process,SBR)法处理拟除虫菊酯类农药化工废水,分析了超声氧化工序中不同因素对废水化学需氧量(chemical oxygen demand,COD)去除率的影响以及SBR工序的最佳处理时间.结果表明:当进水COD值为613.5 mg·L-1、超声反应时间为40 min、H2O2(30%)加入量为6 mL·L-1时,超声氧化工序的废水COD去除率最高,达到45.7%;经超声氧化最佳工艺条件预处理的废水进入SBR反应器反应4 h,出水COD值为52.64 mg·L-1,达到GB 8978—1996《污水综合排放标准》中一级标准的要求.  相似文献   

9.
Fe-Cu微电池电解法预处理硝基苯废水   总被引:7,自引:1,他引:7  
通过使用金属催化剂———铜 ,提高了铁屑法对硝基苯的处理效果 .硝基苯降解过程符合一级动力学规律 ,随着初始质量浓度的增大 ,硝基苯的降解速率常数减小 .铁铜质量比为 10∶1、废水原始pH条件下、进水质量浓度为2 5 0mg·L-1、反应时间为 1h ,硝基苯全部降解 ;同样条件下 ,进水质量浓度为 190 0mg·L-1,反应时间为 4 .5h ,硝基苯的降解率达到 10 0 % .  相似文献   

10.
高盐度化学制药废水预处理试验研究   总被引:2,自引:2,他引:0       下载免费PDF全文
采用"蒸馏+铁炭内电解+絮凝"工艺对某制药企业排放的废水进行预处理。经过蒸馏脱盐后,综合废水盐度(质量分数,下同)由7.4%降至0.15%;再采用"铁炭内电解+絮凝"工艺进行处理,内电解试验最佳工艺条件:进水pH值为3.0、铁炭比为4∶1(体积比)、停留时间为6 h,COD去除率达到26.5%;絮凝试验最佳pH值为9.0,COD去除率达到1.5%。废水经过预处理后,COD去除率达到28.0%,出水COD质量浓度(下同)降至20 988 mg/L,ρ(BOD)5/ρ(COD)由0.28提高至0.41。预处理出水厌氧可生化性试验表明,当进水COD质量浓度为9 000 mg/L左右时,容积负荷(COD)为1.0 kg/(m3.d),出水COD质量浓度降低至2 100 mg/L左右,COD去除率达到75.0%。说明该制药废水经过预处理后可生化性显著提高,为后续的生化处理创造了有利条件。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号