首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
下击暴流具有与常规大气边界层近地风完全不同的风场特征.基于CFD(Computational fluid dynamics)数值仿真技术,完成了几何缩尺比为1∶2 000的下击暴流过程的数值模拟,并将其风剖面的模拟结果与理论模型进行了对比.在此基础上,研究在下击暴流作用下,将大跨平屋面置于距下击暴流中心不同径向位置时,屋面平均风压系数和速度场的分布规律,并与大气边界层风场中平屋面的风荷载特性进行了对比.结果表明:数值模拟方法能够较好地再现下击暴流的风场特性;下击暴流风场中平屋面风压分布规律明显区别于大气边界层风场中的风压特性;平屋面风压分布特性与其距下击暴流中心的距离密切相关,随着平屋面逐渐远离下击暴流中心,屋面所承受的压力逐渐由正压转为负压.  相似文献   

2.
采用平面壁面射流模拟下击暴流的出流段风场,通过协同流模拟下击暴流水平移动,基于计算流体动力学方法,采用雷诺应力模型(RSM)的Stress-Omega模型模拟了稳态下击暴流的平均风剖面,并在风场中建立高层建筑物模型,研究下击暴流风场中高层建筑物表面风压分布特性.结果表明,采用平面壁面射流模型得到的水平速度竖向风剖面与下击暴流理论风剖面以及试验结果吻合较好,壁面射流模型风场中建筑风压分布特征与冲击射流风洞试验一致;迎风面风压系数随着顺流向距离的增加而不断减小,随着射流入流湍流强度的增大而减小.当下击暴流风剖面半高值大于1.45倍建筑物高度时,壁面射流风场中建筑风压分布与大气边界层风场中类似.协同流对结构中下部风压分布影响较大,而风向角对最大风压的影响不大.  相似文献   

3.
为研究下击暴流对低矮双坡建筑的影响,基于计算流体动力学方法模拟了下击暴流作用下低矮双坡建筑表面风压,分析了两种典型屋面坡角和湍流模型对下击暴流作用下低矮双坡建筑物的表面风压特性的影响.结果表明:下击暴流作用下,小坡角(16°)时迎风面上边缘的负压梯度较大,两侧屋面受到负压作用,大坡角(35°)时屋脊处的负压较大且更加集中,迎风面侧和背风侧屋面分别呈现正压分布和负压分布;在采用标准壁面函数处理近壁面粘性区域时,不同湍流模型的低矮双坡建筑风压分布的差别主要体现在迎风面、屋脊处以及两侧屋盖面上下边缘,剪切应力运输湍流模型更适合于模拟下击暴流作用下大坡角低矮双坡建筑物屋脊处风压以及处理小坡角低矮双坡建筑物沿来流方向屋面上下两边缘棱角处的强分离流动问题.  相似文献   

4.
利用计算流体动力学方法对常规风和下击暴流作用下定日镜的表面风压进行数值模拟和对比分析.研究结果表明:在常规风和下击暴流作用下,定日镜在各工作仰角下的迎风面均以正压为主,在镜面上边缘存在极小范围的负压区域,背风面负压整体呈现上部小、下部大对称分布的特点.随着工作仰角的增大,在常规风和下击暴流作用下,定日镜迎风面压力峰值中心均由底部逐渐上移,峰值压力逐渐增大,当处于大工作仰角时,迎风面高压区在常规风风场中位于上部,而下击暴流风场中位于中部且高压区分布范围比常规风更大.定日镜背风面负压峰值随工作仰角增大在常规风风场中逐渐减小,而在下击暴流风场中背风面压力基本不变,当处于小工作仰角时,在常规风风场中定日镜背风面谷值压力位于上部,分布梯度明显,在下击暴流风场中背风面压力分布较均匀.  相似文献   

5.
应用一种下击暴流发生装置,在大气边界层风洞内模拟了适用于大跨度屋盖风洞试验的1∶300比例下击暴流风场。在此基础上,对下击暴流作用下大跨度平屋盖结构的风压分布特征进行了风洞试验,并与常规B类地貌的相应试验结果进行对比。结果表明:在模型区内,下击暴流发生的相对位置对风压系数的影响整体较小;下击暴流作用下平均风压分布与B类风场下的结果基本一致,但极小风压系数绝对值最大值9.85比B类风场的5.54超出77.8%,并且相应脉动风压的功率谱显著高于B类风场的试验结果;B类风场下平屋面的极大风压系数最大值均接近或小于0,但不同风向角的下击暴流风作用下高于0.15的极大风压系数所占的屋盖面积比例处于51%到75%的范围之间,极大风压系数局部最高可达0.35,大范围的较高正压会进一步影响结构的承载力。  相似文献   

6.
为研究下击暴流强风冲击作用下定日镜表面风压变化特征,基于计算流体动力学的方法对下击暴流瞬态风场中不同工作姿态的定日镜表面风压进行数值模拟.结果 表明,受到下击暴流形成扩散过程引起的近地面风场变化影响,在下击暴流的冲击作用下定日镜迎风面和背风面风压都表现为先增大后减小的时变特征,背风面比迎风面提前达到压力峰值,且迎风面和背风面瞬时峰值压力均明显大于稳态风场中的相应峰值压力.同一时刻下,定日镜迎风面正压峰值中心随着俯仰角的增大逐渐向上移至镜面中心,风压系数峰值可达1.4,背风面负压峰值中心随俯仰角增大逐渐向两侧水平偏移,风压系数峰值由1.8减小到1.0.在小俯仰角工作姿态下定日镜背风面会遭受更大的负压作用,说明现行的定日镜抗风设计中采用的小俯仰角避险姿态并不完全适用于下击暴流强风作用的状况.  相似文献   

7.
以低矮建筑为研究对象,进行了下击暴流作用下的刚性模型风洞试验.利用冲击射流装置模拟下击暴流,分析了典型径向位置处建筑表面平均和脉动风压系数分布特征,研究了建筑风压系数、体型系数及气动力特征随径向距离(r)的变化规律.结果表明:低矮建筑在下击暴流作用下,迎风面受到正向风压的作用,屋面、背风面及侧面受到负压作用;当建筑的径向距离大于喷口直径(Djet),即r>1.0Djet时,建筑中心线处风压值的大小都随着r的增大而减小;当0.5Djet相似文献   

8.
为减少直立锁缝屋面系统在下击暴流作用下的风揭损毁事故,提出了下击暴流作用下的直立锁缝屋面系统抗风揭可靠度评估方法 . 采用大涡模拟(large eddy simulation,LES)方法来分析下击暴流作用下屋面风荷载特征,以不同的风向角为工况,得到屋面的极值风荷载大小及其分布位置. 选取屋面最不利位置建立局部仿真模型并推导了相应的失效准则和极限状态函数. 基于拉丁超立方抽样的Monte Carlo法(LHS-MCS)对下击暴流作用下的直立锁缝屋面系统进行可靠度评估. 结合常态风可靠指标以及相关规范对分析结果进行了评价. 研究结果表明:下击暴流相比常态风更易造成直立锁缝屋面系统风揭破坏,同时下击暴流作用下可靠指标仅满足规范要求的第三级安全水准,建议对重要建筑物进行直立锁缝屋面系统设计时考虑下击暴流的影响.  相似文献   

9.
为研究CAARC高层建筑标准模型在下击暴流作用下的响应,采用所开发的基于边界层风洞的下击暴流出流风速模拟试验装置模拟下击暴流稳态风场和瞬变风场,设计并制作了几何缩尺比为λ_L=1∶200的CAARC气弹模型,分别在下击暴流稳态风、瞬态风以及大气边界层B类风场条件下进行了风洞试验研究.结果表明:所模拟的稳态下击暴流风速剖面与经验风速剖面较为吻合;所模拟的瞬态下击暴流风速时程特性、湍流度与已有文献推荐值总体较为吻合;CAARC高层建筑标准模型在稳态、瞬态下击暴流风场作用下,顶部x、y方向位移时程波动较大,与大气边界层B类风场作用下位移时程存在明显差异.  相似文献   

10.
为研究不同湍流模型和壁面处理方法的组合对立方体建筑物在下击暴流风场中的风压系数模拟结果的影响,基于冲击射流模型建立下击暴流计算域,通过物理试验结果对模拟结果进行验证与对比分析.采用两种不同的网格划分方案,满足ANSYS-Fluent中对于不同壁面处理方法的壁面Y+值的要求.研究结果表明:在选用增强壁面处理情况下,剪切应力运输(SST)k-ω湍流模型在迎风面和背风面与试验结果符合较好,但是屋盖的模拟结果与试验结果相差较大;当选用标准壁面函数时,雷诺应力模型(RSM)展现出了与试验结果较符合的建筑物中线风压系数曲线.当模拟立方体建筑物在下击暴流风场中的表面风压时,相比其他湍流模型和壁面处理方法的组合,RSM湍流模型和标准壁面函数可以得到更好的数值模拟结果.  相似文献   

11.
雷暴冲击风风场与大气边界层风场差异较大.为研究雷暴冲击风作用下高层建筑风荷载特性,采用静止型冲击射流装置模拟稳态雷暴冲击风风场,进行高层建筑刚性模型测压试验,讨论了不同径向位置处高层建筑局部和整体风荷载时域和频域特性.结果表明:建筑表面平均风压最大值出现的位置与径向风速峰值一致.同时,迎风面风压最大值出现在底部,明显不同于大气边界层风场中最大值靠近顶部位置的风压分布特性;径向层风荷载均值最大值出现在建筑中部,横风向和扭转向层风荷载均值为0.径向和横风向层风荷载谱沿高度不变,而扭转向层风荷载谱沿高度变化明显.  相似文献   

12.
大跨度高空弧形连廊模型风洞试验研究   总被引:2,自引:0,他引:2  
介绍了杭州市民中心建筑群模型测压的风洞试验,给出了大跨高空弧形连廊表面的平均(静)风压系数、平均风压和平均风荷载体型系数值,详细讨论了风场和风向角对风压系数和体型系数的影响.结果表明:连廊迎风面处于正压区,而背风面、顶面和底面处于负压区;连廊顶面风载狭缝效应十分明显,而底面不太明显;连廊的整体体型系数大于规范对弧形建筑的规定;按规范(基于平均风压)计算的用于连廊覆面设计的风压结果比应用统计方法(基于平均风压和脉动风压)计算的结果偏小.  相似文献   

13.
在大气边界层风洞中模拟了C,D两类地貌的风场,对某市区办公楼进行了风洞试验,分析了不同风场下高层建筑风压分布特性、风荷载及风致响应特性.结果表明:C类风场下平均风压系数、总体弯矩系数、最大基底剪力和最大基底弯矩均大于D类风场的对应值;C类风场下办公楼风荷载大于D类风场下办公楼风荷载;C类风场下各测点风压谱峰值对应频率均小于D类风场下各测点风压谱峰值对应频率;C类风场下结构顶部峰值加速度大于D类风场下结构顶部峰值加速度.  相似文献   

14.
针对典型风帆体型建筑的风荷载采用风洞试验方法进行研究,给出典型风向下风帆建筑的平均风压和脉动风压的分布特征,探讨该体型建筑产生此类分布的原因,并分析围护结构设计时风帆体型建筑的最不利受风区域.研究表明:风帆容易形成"前压后吸"的风压分布,对于迎风面积大、厚度却相对较小的风帆建筑整体抗风较为不利;脉动风压系数与平均风压系数分布规律较为相似,背风区的风压脉动小于侧风区;当风帆建筑锋利边缘处于侧迎风时,来流风会在锋利边缘发生显著的气动分离,使得该区域出现极大的负压.  相似文献   

15.
超高层建筑风压的幅值特性   总被引:5,自引:1,他引:5  
对方形、矩形、三角形及Y型等10个典型的超高层建筑模型进行了细致的风洞试验,获得了模型表面的平均风压和脉动风压系数.详细讨论了风场和风向角对风压系数空间分布(不同高度分布,同一高度不同侧面上不同测点的风压分布等)的影响.结果表明:建筑物迎风面处于正压区;而侧面和背风面是负压区;D类风场的平均风压系数和B类风场中相近,但根方差风压系数要大很多;迎风面的平均风压系数随高度变化基本服从2α分布;三角形和Y形模型的风压系数小于方形和矩形模型.  相似文献   

16.
本文选用Standard ke 、RNG ke和Realizable ke 3种高雷诺数湍流模型,对CAARC标准高层建筑模型在不同网格划分方案、不同风场环境及不同风向条件下的流场特征进行了模拟,并用风洞试验数据验证模拟效果,得到以下结论:(1)建筑物边界层网格模型的细密程度会对模拟结果产生明显影响,当选用最细密的网格模型进行模拟时,RNG ke模型与风洞试验数据的均方根误差要比选用最稀疏的网格模型时小50%~70%,其余两种模型则大约相差40%~50%。(2)在B类、D类两类风场环境下,RNG ke 模型所得平均风压系数的变化区域及变化趋势基本一致,无明显差别,而其余两种模型在不同风场环境下的变化趋势及变化范围均有较大不同,差别主要表现在建筑物的侧风面和背风面上。(3)0°风向下,RNG ke模型在建筑物侧风面和背风面处的平均误差要比其余两种模型小10%左右;90°风向下,RNG ke模型在侧风面处的平均误差比其余两种模型小大约5%。总体来说,在多种模拟条件下,RNG ke模型所得结果的准确性、稳定性及规律性均要高于其余两种模型。  相似文献   

17.
均匀风场中高层建筑平均风力的阻塞效应   总被引:2,自引:2,他引:0  
以联邦航空咨询委员会协调人会议(CAARC)高层建筑标准模型为例,在同济大学TJ-2建筑风洞中进行了矩形单体高层建筑的阻塞效应试验研究.对阻塞度为4.1%、6.1%、8.4%、10.1%的建筑刚性模型在均匀风场中进行了测压试验.主要研究了阻塞效应对模型平均风力特性的影响.研究结果表明:在均匀来流中,建筑各层的平均阻力系数随着阻塞度的增加而增大,但阻力系数沿高度的分布规律没有显著变化;顺风向平均基底弯矩系数随着阻塞度的增大显著增大.最后,基于试验结果提出了平均阻力系数和顺风向平均基底弯矩系数的阻塞效应修正公式.  相似文献   

18.
对岳阳洞庭湖大桥中塔塔顶风场和风压进行现场实测,得到了桥塔塔顶风压和风速、风向时程.分析了风场特性参数、塔顶风压分布、平均风压系数和脉动风压系数的变化规律.分析结果表明:迎风面各点平均风压系数变化趋势一致,迎风面脉动风压系数较大,背风面脉动风压系数相对较小,在同一面上脉动风压系数差别较小;塔顶周围风场平均湍流度较小且脉动风压系数是风场湍流度的2~3倍.  相似文献   

19.
方形高层建筑顺风向层风力干扰特性   总被引:2,自引:1,他引:1  
利用刚性模型测压试验,研究了受扰建筑层风力的干扰特性(所给出的是顺风向层风力干扰特性).研究了施扰建筑在不同位置时,受扰建筑的顺风向层风力沿高度分布情况,以及层风力干扰因子沿高度分布情况,得到了并列和串列工况的平均层风力干扰因子沿高度分布拟合公式.结果表明,随着施扰建筑位置变化,层风力沿高度分布规律会发生变化,干扰因子沿高度分布规律也会发生变化.顺风向平均层风力干扰因子在某些位置达到1.08左右,顺风向脉动层风力干扰因子在某些位置高达1.5以上.  相似文献   

20.
方形高层建筑风压脉动非高斯特性分析   总被引:5,自引:1,他引:4  
通过风洞刚性模型动态测压试验对单体方形高层建筑脉动风压非高斯特性进行了研究.首先依据测点偏度和峰度及其概率密度函数图给出了高层建筑风压脉动非高斯特性的描述方式,然后分析了高层方形建筑脉动风压非高斯特性,最后给出了不同风向角下的非高斯区域.结果表明,风向角对结构非高斯特性的影响较大,对于直接受来流风作用的立面,其会同时出现正偏和负偏,而峰度值也相对较小,其主要以高斯区域为主,而受分离流和尾流综合作用的立面,该面均为负偏且峰度值相对较大,其主要以非高斯区域为主,当出现流体再附时,相应区域的负偏值会增大而峰度值则减小,导致非高斯区域过渡到高斯区域.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号