首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 232 毫秒
1.
Although tectonic models were presented for exhumation of ultrahigh-pressure (UHP) metamorphic rocks during the continental collision, there is increasing evidence for the decoupling between crustal slices at various depths within deeply subducted continental crust. This lends support to the multi-slice successive exhumation model of the UHP metamorphic rocks in the Dabie-Sulu orogen. The available evidence is summarized as follows: (1) the low-grade metamorphic slices, which have geotectonic affinity to the South China Block and part of them records the Triassic metamorphism, occur in the northern margin of the Dabie-Sulu UHP metamorphic zone, suggesting decoupling of the upper crust from the underlying basement during the initial stages of continental subduction; (2) the Dabie and Sulu HP to UHP metamorphic zones comprise several HP to UHP slices, which have an increased trend of metamorphic grade from south to north but a decreased trend of peak metamorphic ages correspondingly; and (3) the Chinese Continental Science Drilling (CCSD) project at Donghai in the Sulu orogen reveals that the UHP metamorphic zone is composed of several stacked slices, which display distinctive high and low radiogenic Pb from upper to lower parts in the profile, suggesting that these UHP crustal slices were derived from the subducted upper and middle crusts, respectively. Detachment surfaces within the deeply subducted crust may occur either along an ancient fault as a channel of fluid flow, which resulted in weakening of mechanic strength of the rocks adjacent to the fault due to fluid-rock interaction, or along the low-viscosity zones which resulted from variations of geotherms and lithospheric compositions at different depths. The multi-slice successive exhumation model is different from the traditional exhumation model of the UHP metamorphic rocks in that the latter assumes the detachment of the entire subducted continental crust from the underlying mantle lithosphere and its subsequent exhumation as a whol  相似文献   

2.
Mineralogical evidence for continental deep subduction   总被引:2,自引:0,他引:2  
Diamond is an index mineral to prove ultrahigh pressure (UHP) metamorphic conditions because it is only stable at the pressures above 3.3 GPa. Its occurrence in eclogite-facies metamorphic rocks suggests plate subduction to depths over 120 km assuming the normal gradient of lithostatic pressure. Because UHP eclogites are the metamorphic products of basaltic rocks, the occurrence of diamond in the eclogites demonstrates a complete geodynamic cycle in that mafic crustal rocks were subducted t…  相似文献   

3.
The study of continental deep-subduction has been one of the forefront and core subjects to advance the plate tectonics theory in the twenty-first century. The Dabie-Sulu orogenic belt in China crops out the largest lithotectonic unit containing ultrahigh-pressure metamorphic rocks in the world. Much of our understanding of the world's most enigmatic processes in continental deep-subduction zones has been deduced from various records in the Dabie-Sulu rocks. By taking these rocks as the natural laboratory, earth scientists have made seminal contributions to understanding of ultrahigh-pressure metamorphism and continental collision. This paper outlines twelve aspects of outstanding progress, including spatial distribution of the UHP metamorphic rocks, timing of the UHP metamorphism, timescale of the UHP metamorphism, the protolith nature of deeply subducted continental crust, subduction erosion and crustal detachment during continental collision, the possible depths of continental subduction, fluid activity in the continental deep-subduction zone, partial melting during continental collision, element mobility in continental deep-subduction zone, recycling of subducted continental crust, geodynamic mechanism of postcollisional magmatism, and lithospheric architecture of collision orogen. Some intriguing questions and directions are also proposed for future studies.  相似文献   

4.
25 years of continental deep subduction   总被引:2,自引:0,他引:2  
This year marks the 25th anniversary of the discovery of coesite in metamorphic rocks of supracrustal origin. This initiated a revolution of the plate tectonics theory due to intensive studies of ultrahigh pressure metamorphism and continental deep subduction. The occurrence of coesite was first reported in 1984 by two French scientists, C. Chopin and D.C. Smith,  相似文献   

5.
Greenschist-facies metasedimentary and metaigne- ous rocks are frequently found to occur continuously along convergent plate margins where high pressure (HP) or ultrahigh pressure (UHP) metamorphic rocks also crop out[1-7]. Geological investigations of co…  相似文献   

6.
The geological characteristics of ultrahigh-pressure (UHP) metamorphic belts formed by deep subduction of oceanic crust are summarized in this paper. Oceanic-type UHP metamorphic belt is characterized by its protolithlc assemblage of typical oceanic crust, the peak metamorphic temperature 〈600℃, P-T path undergoing blueschist facies during prograde and retrograde metamorphic evolution, reepectively, with low geothermal gradient of cold subduction. The further study of oceanic-type UHP metamorphic belt is very significant for constructing metamorphic reaction series of cold subduction zone, for understanding how aqueous fluids were transported into deep mantle and for classifying the types of UHP metamorphism in cold subduction zone. The uplift and exhumation mechanism of oceanic UHP metamorphic rocks is one of the most challenging problems in the study of UHP metamorphism, which is very important for understanding the geodynamic mechanism of solid Earth. As a traveler eubducted into the mantle depth end then uplifted to the surface, oceanic-type UHP metamorphic belts witness the bulk process from the subduction to exhumation and is an ideal target to study the geochemical behavior end cycling of elements in subduction zones. The tectonic evolution of one convergent orogenic belt can be usually divided into two stages of oceanic subduction and followed continental subduction and collision, and the two best-established examples of orogenic belts are Alpa and Himalaya. Therefore, the study of oceanic-type UHP metamorphic belt is the frontier of the current plate tectonic theory. As two case studies, the current status and existing problems of oceanic-type UHP metamorphic belts in Southwest Tianshan and North Qaidam, NW China, are reviewed in this paper.  相似文献   

7.
The Dabie-Sulu UHP rocks belt: review and prospect   总被引:13,自引:0,他引:13  
The new results in the studies of the Dabie-Sulu UHP rocks belt during the past 5 years were summarized and discussed. The discussion included the following key points: ( i ) UHP eclogite has two kinds of country rocks, with one being UHP eclogite facies rocks and the other non-UHP granitic gneiss. ( ii ) The FeTiO3 in olivine indicated exsolution at depth of 300–400 km. However, the key point is to prove the peridotite in which the FeTlO3 in olivine was found once had been subducted down that depth. ( iii ) UHP hydrous phase evidenced that fluids had taken part in the UHP metamorphism, while the meter-scale inhomogeneous distribution of O-, C-isotope indicated no fluid activity in the deep subduction environment. ( IV ) No agreement has been arrived on many problems related to the tectonic background of the UHP rocks, such as “whether or not ophiolitic rocks there exist now?”, “when did UHP metamorphism proceed?”, “what is the subdution polarity?”, etc. ( V ) How did the UHP rocks exhume from mantle depth? The future studies will focus on the following three subjects: ( i ) thermal dynamics of the UHP metamorphism, ( ii ) relationship between UHP metamorphism and collision orogeny, as well as their geodynamics, and ( iii ) interactions between crust and mantle, and between continental lithosphere and asthenosphere during the collision orogenic process, as well as their constraints to the evolution of continental lithosphere.  相似文献   

8.
The study of subduction-zone processes is a key to development of the plate tectonic theory. Plate interface interaction is a basic mechanism for the mass and energy exchange between Earth's surface and interior. By developing the subduction channel model into continental collision orogens, insights are provided into tectonic processes during continental subduction and its products. The continental crust, composed of felsic to mafic rocks, is detached at different depths from subducting continental lithosphere and then migrates into continental subduction channel. Part of the subcontinental lithospheric mantle wedge, composed of perido- tile, is offscrapped from its bottom. The crustal and mantle fragments of different sizes are transported downwards and upwards inside subduction channels by the corner flow, resulting in varying extents of metamorphism, with heterogeneous deformation and local anatexis. All these metamorphic rocks can be viewed as tectonic melanges due to mechanical mixing of crust- and man- lie-derived rocks in the subduction channels, resulting in different types of metamorphic rocks now exposed in the same orogens. The crust-mantle interaction in the continental subduction channel is realized by reaction of the overlying ancient subcontinental lithospheric mantle wedge peridotite with aqueous fluid and hydrous melt derived from partial melting of subducted continental basement granite and cover sediment. The nature of premetamorphic protoliths dictates the type of collisional orogens, the size of ultrahigh-pressure metamorphic terranes and the duration of ultrahigh-pressure metamorphism.  相似文献   

9.
A continuous flow method, by a combination of thermal conversion elemental analyzer (TC/EA) with isotope ratio mass spec- trometry (MS), was developed to determine both H isotope composition and H2O concentration of ultrahigh-pressure (UHP) metamorphic rocks in the Dabie-Sulu orogenic belt. By using the developed step-heating technique, we have studied H2O concen- tration and H isotope composition of the different forms of water (structural OH and molecular H2O) in garnet. The quantitative measurements of HzO concentration and H isotope composition of minerals in UHP metamorphic rocks from several typical out- crops indicate that the gneisses can release more amounts of water than the eclogites during exhumation of the deeply subducted continental crust. Therefore, by decompression dehydration at the contact between eclogite and gneiss, the released water could flow from the gneiss to the eclogite and result in significant hydration of the eclogite adjacent to the gneiss. The measured maxi- mum water contents of minerals in eclogites indicate that garnet and omphacite have the maximum water solubilities of 2500 and 3500 ppm, respectively, under the peak UHP metamorphic conditions.  相似文献   

10.
Fluid activity during exhumation of deep-subducted continental plate   总被引:9,自引:0,他引:9  
It is well known that a great deal of fluid wasreleased during subduction of oceanic crust, resulting in arcmagmatism, quartz veining and metamorphic mineralizationof syn-subduction. In contrast, the process of continentalsubduction is characterized by the relative lack of fluid andthus no arc magmatism has been found so far. During exhu-mation of deep-subducted continental crust, nevertheless,significant amounts of aqueous fluid became available fromthe decomposition of hydrous minerals, the decrepitation ofprimary fluid inclusions, and the exsolution of structuralhydroxyls. This kind of metamorphic fluid has recently at-tracted widespread interests and thus been one of the mostimportant targets in deciphering the geological processesconcerning metamorphism, magmatism and mineralizationin collisional orogens. A large number of studies inlvolvingstable isotopes, fluid inclusions and petrological phase rela-tionships have been accomplished in past a few years withrespect to the mobility and amount of met  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号