首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
Southern Hemisphere mid-latitude westerlies contribute to the ventilation of the deep Southern Ocean (SO), and drive changes in atmospheric carbon dioxide (CO2) and the global climate. As the westerlies control directly oceanic fronts, the movement of the subtropical front (STF) reflects the westerlies migration. Thus it is important to understand the relationships between STF movement and the weaterlies, ventilation of the deep SO, ice volume and atmospheric CO2. To this end, we use two new high-resolution records from early Marine Isotope Stage (MIS) 20 (~800 ka) of sea surface temperature (SST) based on Uk’ 37 paleo-thermometer and benthic oxygen isotope (δ18OB) at Ocean Drilling Program (ODP) Site 1170B in the southern Tasman Sea (STS), to construct linkages between the marine records and atmospheric proxies from Antarctic ice-cores. During the last 800 ka, the average SST (10.2°C) at Site 1170B is 1.8°C lower than today (annual average 12°C). The highest average SST of 11.6°C occurred during MIS 1, and the lowest average SST of 7.8°C occurred during MIS 2. The warmest and coldest records of 14.7°C and 6.2°C occurred in the MIS 5 and MIS 2, respectively. In the glacial-interglacial cycles of the last 800 ka, variability of reconstructed SST shows that the STF moved northward or southward more than 3° of latitude compared with its present location. In the warmest stage MIS 5, the STF shifted to its southernmost location of ~49°S. In contrast, in the coldest stage MIS 2, the STF moved to its northernmost location of ~43°S. In response to orbital cycles, the westerlies movement led ice volume and atmospheric CO2 changes, but it was in phase with change in Antarctic atmospheric temperature. Ice volume only preceded atmospheric CO2 only a little at the 23-ka precession band, lagged the atmospheric CO2 at the 100-ka eccentricity band, and was in phase with atmospheric CO2 at the 40-ka obliquity band.  相似文献   

2.
Carbon isotopic compositions of soil CO2 in rainy season (July) from two natural soil profiles (DHLS & DHS) in the monsoon evergreen broadleaf forest in the Dinghushan Biosphere Reservoir (DBR), South China, are presented. Turnover and origins of soil CO2 are preliminarily discussed in this paper. Results show that the content of soil CO2 varies between 6120 and 18718 ppmv, and increases with increasing depth until 75 cm, and then it declines. In DHLS, soil CO2 δ13C ranges from −24.71‰ to −24.03‰, showing a significant inverse correlation (R2=0.91) with the soil CO2 content in the same layer. According to a model related to soil CO2 δ13C, the soil CO2 is mainly derived from the root respiration (>80%) in DHLS. While in DHS, where soil CO2 ? 13C ranges from −25.19‰ to −22.82‰, soil CO2 is primarily originated from the decomposition of organic matter (51%–94%), excluding the surface layer (20 cm, 90%). Radiocarbon data suggest that the carbon in soil CO2 is modern carbon in both DHLS and DHS. Differences in 14C ages between the “oldest” and “youngest” soil CO2 in DHLS and DHS are 8 months and 14 months, respectively, indicating that soil CO2 in DHLS has a faster turnover rate than that in DHS. The 14C values of soil CO2, which range between 100.0‰ and 107.2‰ and between 102.5‰ and 112.1‰ in DHLS and DHS, respectively, are obviously higher than those of current atmospheric CO2 and SOC in the same layer, suggesting that soil CO2 is likely an important reservoir for Bomb-14C in the atmosphere.  相似文献   

3.
We carried out a downscaling treatment over China using the CarbonTracker numerical model, which was applied using double grid nesting technology (3° × 2° over the whole globe, 1° × 1° over China), simulating and analyzing atmospheric CO2 concentrations over 10 recent years (2000–2009). The simulation results agreed very well with observed data from four background atmospheric monitoring stations in China (The periods for which the simulation results and observed values be compared were January 2000 to December 2009 for the WLG station and June 2006 to December 2009 for the SDZ, LFS, and LAN stations), giving correlation coefficients of >0.7. The high-resolution simulation data correlated slightly better than the low resolution simulation data with the observed data for three of the regions’ atmospheric background stations. Further analysis of the annual, seasonal CO2 concentration variations at the background stations showed that the CO2 concentration increased each year over the study period, with an average annual increase of more than 5%, and annual increases of more than 7% at the Shangdianzi and Lin’an stations. Seasonal CO2 variations were greater at the Longfengshan station than at the Shangdianzi or Lin’an stations. However, the CO2 concentrations were higher at the Shangdianzi and Lin’an stations because they are greatly affected by human activities in the Jingjinji and Changjiang Delta economic zones. Spatial distribution in CO2 concentrations and fluxes were higher in eastern than in western China.  相似文献   

4.
Zheng  YouFei  Li  HaiTao  Wu  RongJun  Wang  LianXi 《科学通报(英文版)》2010,55(19):1983-1992
Global warming tends to be the major characteristics of the dramatic global climate change. To deal with these changes, the impact of reducing greenhouse gas (GHG) emission on Chinese future economic and social development has to be assessed. In this paper, a Regional Integrated model of Climate and the Economy (RICE), which is well known and accepted widely, has been used for Chinese economic assessment of climate change after introduction, assimilation and verification. Based on a sensitivity analysis of technical parameters in the RICE model and constrained targets proposed for energy saving and emissions reduction technological advance programs of China from 2000 to 2050, the economic impact of the programs is examined. The results indicate that when technology advances, Chinese CO2 emission, climate loss, and the growth rate of atmospheric CO2 concentration and temperature will all decrease. It is assumed that in 2010, the CO2 emission is 20% lower than in 2005, CO2emission in 2050 would only double the level in 2000, the accumulative CO2 emission would be decreased by 12.4 GtC, and the atmospheric CO2 concentration and temperature in 2050 would reduce by 35 GtC and 0.04°C respectively from 2000 to 2050. The accumulative climate loss from 2000 to 2050 will drop down by 4.6 billion dollar, which only accounts for 6% of the global total benefits. However, the economic benefit the developed countries will obtain is 10 times that for China under such a technological advance scenario. The decrease of the CO2 emission control rate is 1% in cooperation policy while 4.6% in non-cooperation policy, which would relieve China’s burden in the control of CO2 total emission and thereby benefit China in participation of the international cooperation for CO2 emission reduction.  相似文献   

5.
Based on the long-term monitoring data on CO2 concentration, variation trend and characteristics of CO2 background concentration in the atmosphere over the Chinese mainland are analyzed. Results show that the increasing trend of CO2 background concentration in the atmosphere over the Chinese mainland has appeared during the period of 1991–2000. The average annual CO2 growth increment is 1.59 μL/L, and the average annual CO2 growth rate is 0.44%. Distinct seasonal variations of CO2 background concentration are observed, and the averaged amplitude of CO2 seasonal variations is 10.35 μL/L. Regional variation characteristics of CO2 background concentration in the atmosphere and possible impact of human activities on these variations over the Chinese mainland are discussed as well.  相似文献   

6.
The concentration of atmospheric CO2 in Beijing increased rapidly at a mean growth rate of 3.7% · a−1 from 1993 to 1995. After displaying a peak of (409.7±25.9) μmol · mol−1 in 1995, it decreased slowly. Both the almost stable anthropogenic CO2 source and increasing biotic CO2 sink contribute to the drop of CO2 concentration from 1995 to 2000. The seasonal variation of CO2 concentration exhibits a clear cycle with a maximum in winter, averaging (426.8±20.6) μmol · mol−1, and a minimum in summer, averaging (369.1±6.1) μmol·mol−1. The seasonal variation of CO2 concentration is mainly controlled by phenology. The mean diurnal variation of atmospheric CO2 concentration for a year in Beijing is highly clear: daily maximum CO2 concentration usually occurs at night, but daily minimum CO2 concentration does in the daytime, with a mean diurnal difference more than 34.7 μmol·mol−1. It has been revealed that the interannual variations of atmospheric CO2 concentration in winter and autumn regulated the interannual trend of atmospheric CO2, whereas the interannual variation of CO2 concentration in summer affected the general tendency of atmospheric CO2 in a less degree.  相似文献   

7.
To more comprehensively analyze the effect of CO2 and H2O on the gasification dissolution reaction and deep reaction of coke, the reactions of coke with CO2 and H2O using high temperature gas-solid reaction apparatus over the range of 950-1250℃ were studied, and the thermodynamic and kinetic analyses were also performed. The results show that the average reaction rate of coke with H2O is about 1.3-6.5 times that with CO2 in the experimental temperature range. At the same temperature, the endothermic effect of coke with H2O is less than that with CO2. As the pressure increases, the gasification dissolution reaction of coke shifts to the high-temperature zone. The use of hydrogen-rich fuels is conducive to decreasing the energy consumed inside the blast furnace, and a corresponding high-pressure operation will help to suppress the gasification dissolution reaction of coke and reduce its deterioration. The interfacial chemical reaction is the main rate-limiting step over the experimental temperature range. The activation energies of the reaction of coke with CO2 and H2O are 169.23 kJ·mol-1 and 87.13 kJ·mol-1, respectively. Additionally, water vapor is more likely to diffuse into the coke interior at a lower temperature and thus aggravates the deterioration of coke in the middle upper part of blast furnace.  相似文献   

8.
One stalagmite oxygen isotope record from Sanbao Cave, China, established with 7 230Th ages and 355 oxygen isotope data, pro- vides a continuous history of the East Asian Monsoon (EAM) intensity for the period from 284 to 240 thousand years before present (ka BP) with typical errors of 3―4 ka. This new record extends the previously published stalagmite δ18O record back to the marine oxygen isotope stage (MIS) 8. The MIS8 EAM record broadly follows orbitally-induced insolation variations and is punctuated by...  相似文献   

9.
Under an Ensemble Kalman Filter(EnKF)framework,Regional Atmospheric Modeling System and Models-3 Community Multi-scale Air Quality(RAMS–CMAQ)modeling system is developed to be a CO2data assimilation system EnKF–CMAQ,and the EnKF–CMAQ system is then applied to East Asia for validation with real continuous surface CO2concentration observations available in the study domain instead of using an observation simulation system experiment.Experiments with an experimental period of January 23 to February 7,2007 are conducted,and the experimental results of the EnKF–CMAQ system and the RAMS–CMAQ model are compared against continuous surface CO2observations from assimilation sites and independent reference sites.Distributions of daily mean CO2concentration increments show that the EnKF–CMAQ system confines the update of daily mean CO2within areas nearby and downwind of the assimilation sites.Both the CO2concentration ensemble spreads and background error covariances show flow-dependent patterns.The results indicate the crucial role of wind transport in the CO2data assimilation,which agrees with the previous studies.The average bias and the average root-mean-square error(RMSE)of daily mean CO2concentration at the assimilation sites are reduced by 1.00 and1.83 ppm,respectively,and those at the reference sites are reduced by 0.24 and 0.22 ppm,respectively.The results demonstrate the EnKF–CMAQ system is capable of assimilating the continuous surface CO2concentration observations to improve the simulation accuracy of the atmospheric CO2synoptic variation.Since growing CO2observations over East Asia are being available nowadays,this work is our first step to generate consistent spatial and temporal atmospheric CO2concentration fields over East Asia,particularly over China,using both in situ and satellite observations.  相似文献   

10.
Using the eddy covariance method, from 1 July 2003 to 30 June 2004, we conducted the observation and analysis of ecosystem CO2 flux in 3 types of alpine meadow vegetation (Kobresia humilis, Potentilla fruticosa shrub and Kobresia tibetica swamp meadows) on the Qinghai-Tibetan Plateau. The results show that the Kobresia humilis meadow, the shrub meadow and the swamp meadow's highest CO2 uptake rates are 16.78, 10.42 and 16.57 μmol·m^-2·-s^-1 respectively, while their highest CO2 release rates are 8.22, 7.73 and 18.67μmol·m^-2·-s^-1 respectively. The Kobresia humilis meadow and shrub meadow's annual atmospheric uptakes are 282 g CO2/m^2 and 53 g CO2/m^2, respectively, while swamp meadow's annual atmospheric release is 478 g CO2/m^2. This proves that the Kobresia humilis meadow and the shrub meadow on the Qinghai-Tibetan Plateau have relatively low potential for CO2 uptake and release compared to C4 grasslands, a number of lowland grasslands, and forests. Moreover, swamp meadow has relatively high release potential. This, in turn, reveals clear differences in carbon source/sink between different types of vegetation in the Qinghai-Tibetan Plateau alpine meadow ecosystem. These differences are mainly brought by differences in the vegetations' photosynthetic capacity and soil respiration.  相似文献   

11.
Terrestrial carbon cycling is one of the hotspots in global change issues. In this paper, we presented the rationale for determination of net exchange of CO2 between terrestrial and the atmosphere (NEE) and the methods for measuring several relevant components. Three key processes for determination of NEE were addressed, including the separation of shoot autotrophic respiration from total CO2 emissions of the ecosystem, the partition of root respiration from soil CO2 efflux, and the quantification of rhizodeposition C from NPP. With an understanding of the processes involved in the CO2 exchange between terrestrial and the atmosphere, we estimated NEE of rice ecosystem in Nanjing based on field measurements of CO2 emissions and several relevant biotic components as well as abiotic factors. The field measurements of CO2 emissions were made over the rice-growing seasons in 2001 and 2002 with the static opaque chamber method. Calculations indicated that the seasonal pattern of NEE is comparable for two seasons. Either net carbon emission or fractional carbon fixation occurred during 3 weeks after rice transplanting and thereafter net carbon fixation appeared with an increasing trend as rice growing. Higher net carbon fixation occurred in the rice developmental period from elongating to heading. A decline trend in the fixation was documented after rice heading. The mean daily NEE was -6.06 gC·m−2 in 2001 season and -7.95 gC·m−2 in 2002 season, respectively. These values were comparable to the results obtained by Campbell et al. who made field measurements with the Bowen ratio-energy balance technique in irrigated rice, Texas USA. Moreover, the mean daily NEE in this study was also comparable to the values obtained from a Japanese rice paddy with the eddy covariance method under the similar water regime, either drainage course or waterlogged. It is concluded that NEE determined by the static opaque chamber method is comparable and in agreement with those measured by Bowen ratioenergy balance and eddy covariance methods.  相似文献   

12.
In recent years,global warming caused by emission of CO2has attracted considerable attention from the public.Although the measurements from AIRS,GOSAT,SCIAMACHY and IASI have been frequently used to derive atmospheric CO2concentration,comprehensive quantification of the differences among these CO2products is still not fully investigated yet.In this paper,a series of strategies have been proposed to allow the CO2products from different instruments to be physically inter-comparable.Based on this,these CO2products are inter-compared in terms of magnitude and their spatiotemporal distributions.The results reveal that the correlations among these CO2products are relatively weak,and some discrepancies are detected in terms of the CO2spatiotemporal characteristics,demonstrating more efforts should be made in the future to improve the retrievals of CO2.Their spatial coverage differences reflected in this study imply the great necessity to generate consistent products with improved spatial and temporal continuities by combining these CO2measurements.  相似文献   

13.
This paper presents a rapid regression algorithm for the retrieval of methane(CH4)profile from Atmospheric Infrared Sounder(AIRS)based on empirical orthogonal functions(EOF)and its validation.This algorithm was trained using the simulated radiance from an assemble of atmospheric profiles and can be utilized to derive the CH4profile rapidly with the input of the AIRS cloud-clear radiance.Validation using hundreds of aircraft profiles demonstrates that the root mean square error(RMSE)is about 1.5%in the AIRS sensitive region of359–596 hPa,which is smaller than AIRS-V5 product(except in high latitudes).Comparison with the groundbased solar Fourier transform spectrometry observations showed that the RMSE of the retrieved CH4total column amount is less than 3%.This EOF-based regression method can be easily applied to other thermal infrared sounders for deriving CH4and some other gases,and the derived profiles can be used as the first guess for further physical retrieval.  相似文献   

14.
The growth and activity of photosynthetic CO2 uptake and extracellular carbonic anhydrase (CAext) of the marine diatom Skeletonema costatum were investigated while cultured at different levels of CO2 in order to see its physio-logical response to different CO2 concentrations under either a low (30 靘ol·m-2·s-1) or high (210 靘ol·m-2·s-1) irradiance. The changes in CO2 concentrations (4—31 靘ol/L) affected the growth and net photosynthesis to a greater extent under the low than under the high light re-gime. CAext was detected in the cells grown at 4 mol/L CO2 but not at 31 and 12 靘ol/L CO2, with its activity being about 2.5-fold higher at the high than at the low irradiance. Photo- synthetic CO2 affinity (1/ K1/2(CO2)) of the cells de-creased with increased CO2 concentrations in culture. The cells cultured under the high-light show significantly higher photosynthetic CO2 affinity than those grown at the low-light level. It is concluded that the regulations of CAext activity and photosynthetic CO2 affinity are dependent not only on CO2 concentration but also on light availability, and that the de-velopment of higher CAext activity and CO2 affinity under higher light level could sufficiently support the photosyn-thetic demand for CO2 even at low level of CO2.  相似文献   

15.
According to the investigations of five loess sections in Shanxi Province, China, it was found that the concentrations of the major greenhouse gases CO2, CH4 and N2O in loess-paleosol sequences are generally high, even sometimes may be several times or scores of times higher than their atmospheric concentrations respectively. Although the CO2 concentration in the same loess section shows poor regularity among different layers, it increases slowly from north to south in space. The CH4 concentration in the layers under Malan Loess is much higher than that in the atmosphere, although it is not high in Malan Loess. Most of the δ13C values of CO2 in loess are -11.14‰—15.48‰ (relative to PDB standard). Analysis of carbon isotopic compositions of CO2 indicates that the main source of CO2 in loess section is decomposition of ‘stable’ organic matters by microbes. The δ13Cg of CO2 is a little heavier than organic source for exchanging carbon isotope with carbonate in loess. The abundant carbonate in loess not only makes the loess a huge carbon reservior but also adjusts  相似文献   

16.
Oxalic-acid-based co-precipitation method was employed to prepare LiNi2/3Mn1/3O2 sample with a high-ordered structure. Li+, Ni2+ and Mn2+ acetates were used as starting materials. The influence of the amount of lithium source in the starting materials on Li+ content, disorder of Li+-Ni2+ ions, and electrochemical performance has been investigated. Rietveld refinement shows that the sample prepared with 20% excess Li-source in the starting materials exhibits a perfect ordered structure. A specific discharge capacity is as high as 172 mAh/g at C/20 in the voltage range of 4.35–2.7 V. However, the cyclability is not satisfactory: about 25.3% fade in capacity was observed over 50 cycles. Chemically stable SiO2 was coated on the surface of LiNi2/3Mn1/3O2 particles. A significant improvement in cyclability was attained with 3 wt% SiO2 coating, which is ascribable to the protection of LiNi2/3Mn1/3O2 particles from being dissolved into the electrolyte.  相似文献   

17.
The toxic effect of different solubilizing excipients on the growth and metabolism of Tetrahymena thermophila BF5 (T.t.BF5) at various concentrations was investigated by microcalorimetry. The thermogenic curves of T.t.BF5 growth were determined at 28°C, and were evaluated by dynamic parameters. The results indicated that the values of growth rate constant (k), maximum power (P1, P2), peak time (T1, T2) and total quantity of heat (Q) varied for different excipients. There was a good linear relationship between k and concentrations (r>0.95, P<0.01). 5% inhibition concentration (IC5) of poloxamer 188, Tween 80, PEG 600, PEG 400 and Tween 20 was 2.18, 1.07, 1.35, 0.58, and 0.045 mg/mL, respectively. After the principal component analysis (PCA), Q, k and P1 could characterize the effect of these excipients on T.t.BF5 growth. Comprehensive evaluation indicated that compared with the control group, poloxamer 188 had the weakest toxicity and Tween 20 had the strongest toxicity.  相似文献   

18.
Fabrication and S-F-codoping of TiO2 nanotubes were carried out by a one-step electrochemical anodization process to extend the photoresponse of TiO2 to the visible-light region. The prepared samples were annealed in air and detected by SEM, XRD, XPS and UV-vis DRS spectrophotometer. The results showed that the average tube diameter of the nanotubes was 150 nm and the average tube length was 400 nm. The doped TiO2 nanotubes exhibited strong absorption in visible-light region. Photoelectrocatalytic degradation efficiency of 4-CP over S-F-codoped TiO2 nanotubes was 39.7% higher than that of only-F-doped sample. Moreover, sulfur and fluorine codoped into substitutional sites of TiO2 had been proven to be indispensable for strong response and high photocatalytic activity under visible light, as assessed by XPS.  相似文献   

19.
The transient absorption spectrum technique was employed to investigate the cross-reaction mechanism of C6H5F-HNO2 aqueous solution irradiated at 355 nm. The characteristic and the kinetic parameters of transient species were also detected. Hydroxyl radical derived from the photolysis of HNO2 was added to monofluorobenzene with a second-order rate constant of (5.83±0.17)×10^9 L·mol^-1·s^-1 to form an adduct, C6H5F…OH, which was able to react with HNO2 as the main reaction pathway with a rate constant of (8.3±0.1)×10^7 L·mol^-1·s^-1. The C6F6…OH adduct can also be decayed by elimination of H2O to yield monofluorophenyl radical C6H4F-. By GC-MS technique, the final products were identified to be monofluorophenol, nitro-monofluorobenzene, nitro-monofluorophenol and para-fluorobiphenyl.  相似文献   

20.
Field measurements of air-sea CO2 exchange in three coral reef areas of the South China Sea (i.e. the Yongshu Reef atoll of the Nansha Islands, southern South China Sea (SCS); Yongxing Island of Xisha Islands, north-central SCS; and Luhuitou Fringing Reef in Sanya of Hainan Island, northern SCS) during the summers of 2008 and 2009 revealed that both air and surface seawater partial pressures of CO2 (pCO2) showed regular diurnal cycles. Minimum values occurred in the evening and maximum values in the morning. Air pCO2 in each of the three study areas showed small diurnal variations, while large diurnal variations were ob-served in seawater pCO2. The diurnal variation amplitude of seawater pCO2 was ~70 μmol mol–1 at the Yongshu Reef lagoon, 420–619 μmol mol–1 on the Yongxing Island reef flat, and 264–579 μmol mol–1 on the reef flat of the Luhuitou Fringing Reef, and 324–492 μmol mol–1 in an adjacent area just outside of this fringing reef. With respect to spatial relations, there were large differences in air-sea CO2 flux across the South China Sea (e.g. ~0.4 mmol CO2 m–2 d–1 at Yongshu Reef, ~4.7 mmol CO2 m–2 d–1 at Yongxing Island, and ~9.8 mmol CO2 m–2 d–1 at Luhuitou Fringing Reef). However, these positive values suggest that coral reef ecosystems of the SCS may be a net source of CO2 to the atmosphere. Additional analyses indicated that diurnal variations of surface seawater pCO2 in the shallow water reef flat are controlled mainly by biological metabolic processes, while those of deeper water lagoons and outer reef areas are regulated by both biological metabolism and hydrodynamic factors. Unlike the open ocean, inorganic metabolism plays a significant role in influencing seawater pCO2 variations in coral reef ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号