首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
含砷低品位硫化铜矿生物柱浸实验   总被引:2,自引:0,他引:2  
介绍了含砷低品位硫化铜矿柱浸实验研究方法、装置和结果.实验在八根有机玻璃柱浸系统中进行,考察了细菌种类、矿石粒度、供氧条件及浸出周期等参数对浸出率的影响.结果表明,在-12mm粒度下,采用Z08090-O菌株浸出,浸出167d,铜浸出率为80.75%.对含大量黄铁矿且耗酸脉石少的矿石,酸的累积降低了采用普通驯化浸矿菌的铜浸出率,但采用激光诱变获得的耐低pH值浸矿菌,能够保持高效的铜浸出率.  相似文献   

2.
铜镍尾矿细菌浸出的试验研究   总被引:2,自引:0,他引:2  
通过正交试验研究了pH值、矿浆质量分数、矿石粒度、细菌接种量、表面活性剂吐温20用量对铜镍矿尾矿细菌浸出的影响.试验结果表明,铜浸出的最佳条件:pH值为1.5,矿石粒度为小于0.074 mm,接种量(体积分数)为50%以及不添加表面活性剂;镍浸出的最佳条件:pH值为1.0,矿石粒度为大于0.147mm,接种量(体积分数)为25%及不添加表面活性剂.细菌氧化后,铜和镍的浸出率分别达到63.41%和91.74%.  相似文献   

3.
生物堆浸-萃取-电积提铜技术是上世纪80年代发展的低品位铜资源短流程提取技术,目前在全球得到广泛应用,已有20个以上生物提铜矿山在运行.生物堆浸在铜矿湿法冶金过程中的应用表明,该技术适宜铜矿物嵌布粒度细(一般<50 μm),结合率高,钙镁含量高,常规湿法冶金或选矿难以处理的矿石.实践证明,生物堆浸技术应用于混合铜矿石浸出-萃取-电积生产电解铜,能够提高铜浸出率,降低硫酸单耗,技术经济可行.  相似文献   

4.
以赞比亚某低品位难处理铜钴矿石为研究样本,采用全湿法冶金方法,开展新工艺研究.研究可知:矿石Cu,Co和S质量分数分别为1.270%,0.071%,0.022%.矿石中铜矿物主要为假孔雀石和少量的孔雀石.钴矿物主要为钴锰矿和水钴矿,在褐铁矿和黑云母晶体中有少量铜、钴,矿石中铜钴元素赋存状态极其复杂.最佳的浸出条件为粒度小于74μm的矿粒所占比例70%、浸出温度65℃、浸出时间4 h、矿浆质量分数30%、硫酸加入量55 kg·t-1.该条件下铜浸出率可达74.34%左右,钴浸出率可达43.32%左右.充分利用萃余液中的硫酸可降低酸耗,硫酸用量减少20%以上.在搅拌浸出过程中加入适量还原剂Na_2SO_3或FeSO_4,可将钴的浸出率从43%提高到78%.  相似文献   

5.
紫金山铜矿浸出过程黄铁矿的氧化行为   总被引:2,自引:0,他引:2  
针对紫金山铜矿堆浸过程中,在辉铜矿和铜蓝等有用矿物浸出的同时,有黄铁矿被大量浸出,造成浸出液中Fe3 浓度过高的现状,研究了细菌浸出黄铁矿的氧化行为和机理,重点考察了Fe3 的化学氧化以及细菌浸出黄铁矿过程的影响因素.研究结果表明,在有菌条件下,pH值为1.6时,混合矿浸出初期,黄铁矿的浸出率仅为5%~8%;随着浸出时间的增加,氧化还原电位升高,浸出15d后,氧化还原电位上升到500mV以上时,黄铁矿的浸出率可达25%.说明氧化还原电位是细菌浸出黄铁矿过程的重要影响因素.机理研究表明,细菌浸出黄铁矿是以间接反应为主,细菌在黄铁矿表面的吸附对黄铁矿的浸出具有协同作用.  相似文献   

6.
为了解决铜矿石浸出速度慢、浸出率低的问题,在浸出液中加入表面活性剂进行摇瓶试验.通过测量浸出前后溶液表面张力以及铜浸出率,考察了三种不同类型的表面活性剂对铜矿石浸出的影响.研究发现溶液表面张力对矿石浸出影响较大,阴离子表面活性剂的强化浸出作用最为明显,铜浸出率达62.5%.在柱浸试验中,添加阴离子表面活性剂使铜浸出率提高了近10%.利用物理化学和渗流力学对表面活性剂强化浸出机理的分析表明,溶液表面张力和表面活性剂在矿石表面的吸附对矿石表面润湿作用影响较大,表面活性剂在浸出液的持久性也是影响浸出的因素之一.  相似文献   

7.
表面活性剂强化铜矿石浸出   总被引:1,自引:0,他引:1  
为了解决铜矿石浸出速度慢、浸出率低的问题,在浸出液中加入表面活性剂进行摇瓶试验.通过测量浸出前后溶液表面张力以及铜浸出率,考察了三种不同类型的表面活性剂对铜矿石浸出的影响.研究发现溶液表面张力对矿石浸出影响较大,阴离子表面活性剂的强化浸出作用最为明显,铜浸出率达62.5%.在柱浸试验中,添加阴离子表面活性剂使铜浸出率提高了近10%.利用物理化学和渗流力学对表面活性剂强化浸出机理的分析表明,溶液表面张力和表面活性剂在矿石表面的吸附对矿石表面润湿作用影响较大,表面活性剂在浸出液的持久性也是影响浸出的因素之一.  相似文献   

8.
在生物浸出—溶剂萃取—电积提铜技术中,萃取对生物浸出过程必然产生影响.用最大或然数法(most probable number,MPN)研究了主要萃取参数不同时,萃取过程对嗜酸氧化亚铁硫杆菌(Acidithiobacillus ferrooxidans)的影响.结果表明,萃原液pH为1.5~3.0时,萃余液中细菌细胞浓度逐渐增加,其中pH2.0时活细菌所占比例最大,为24.8%;当Lix984N浓度为2.5%~15%时,萃余液中细菌细胞浓度呈现降低趋势,同时活细菌所占比例由23.6%显著降低到6.2%.萃取过程对浸矿细菌有截留作用,将导致返回堆浸环境中浸矿细菌细胞浓度降低,同时使细菌活性减弱,从而使生物浸矿效率下降.  相似文献   

9.
用溶剂萃取法铜铁分离的研究   总被引:2,自引:0,他引:2  
以低品位铜矿的酸性浸出液作为研究对象,研究了M5640和Lix984两种新型铜萃取剂萃取铜分离铁的性能;其中包括萃取焓变计算,接触时间、pH值、相比等因素对萃取铜分离铁的影响,并得到了两种萃取剂萃取铜的等温线。结果表明:两种萃取剂在萃取铜时都吸热,M5640萃取焓变值△H=40.11kJ/mol,Lix984萃取焓变值△H=6.33kJ/mol;M5640、Lix984萃取含铜浓度为2 g/L的浸出液时平衡时间分别是90sec和240 sec。单因素实验表明接触时间、pH值、相比的增大都有利于萃取铜和铜铁分离;M5640萃取含铜浓度为2 g/L的浸出液时需要一级萃取,而Lix984需要二级萃取才能达到同样的效果,M5640选择性萃取铜的能力优于Lix984;当反萃级数为3级,经多次富集,可得到含铜浓度为45 g/L、铁浓度小于0.05g/L的富铜液,符合生产电解铜工艺的要求。  相似文献   

10.
研究耐高铜离子浓度的嗜酸嗜热菌FD-LH对梅州黄铜矿生物氧化的特性,考察不同温度、pH值、高矿浆浓度对梅州黄铜矿生物氧化速率的影响,并初步研究串级浸矿工艺的浸出特性.结果表明,在70℃,pH值1.5时黄铜矿浸出效果最佳.FD-LH菌具耐高矿浆浓度(15%~20%)的能力.在矿浆浓度15%时,采用分批浸矿工艺,8 d铜的浸出率为92.0%;采用串级浸矿工艺,8 d铜浸出率高达97.4%.串级浸矿工艺有利于提高铜的浸出速率和浸出率.  相似文献   

11.
西藏甲玛地区的硫化铜矿石中含铜矿物以次生硫化铜矿物为主,且含量较低.采用氧化亚铁硫杆菌柱浸的方法对该矿石进行了生物浸出并研究了浸出动力学.基于不同粒级矿石,考察了粒级对铜浸出速率和浸出率的影响,并对浸出率与收缩核模型中的控制方程进行了拟合,确定了浸出过程的控速环节.试验结果表明,铜的浸出速率和浸出率随粒级的减小而增加.矿石表面形貌的SEM表明,浸出过程中矿石表面形成了包含黄钾铁矾的产物层,阻碍了浸出反应的进行.浸出动力学表明,该矿石的浸出过程符合收缩核模型,且浸出应主要受固体产物层内扩散控制.  相似文献   

12.
针对碳酸盐脉石对氧化铜矿酸浸动力学的影响进行探讨,研究了温度、酸度、矿石粒径、液固质量比、振荡速度等因素对含碳酸盐脉石氧化铜矿浸出的影响.结果表明,高温、高酸度、高液固质量比、小粒径和高振荡速度利于矿石的浸出,但碳酸盐脉石使得酸耗增加.考虑浸出成本确定合理的浸出条件为温度303 K、酸度35 g·L-1、矿石粒径0.074~0.125 mm、液固质量比3﹕1以及振荡速度180 r·min-1,浸出180 min后铜浸出率达53.6%.对浸出前后矿石表面形貌进行分析.结果显示碳酸盐脉石与酸反应后在矿石表面形成CaSO4·2H2 O沉淀,覆盖在颗粒表面,限制了矿石颗粒孔裂隙的发育.基于收缩未反应核模型对浸出动力学进行分析,发现碳酸盐脉石反应生成的沉淀阻碍了浸出反应,固体产物层扩散为浸出反应的控制步骤,反应的表观活化能为8.65 kJ·mol-1.  相似文献   

13.
Sulfamic acid (SA), which possesses a zwitterionic structure, was applied as a leaching reagent for the first time for extracting copper from copper oxide ore. The effects of reaction time, temperature, particle size, reagent concentration, and stirring speed on this leaching were studied. The dissolution kinetics of malachite was illustrated with a three-dimensional diffusion model. A novel leaching effect of SA on malachite was eventually demonstrated. The leaching rate increased with decreasing particle size and increasing concentration, reaction temperature and stirring speed. The activation energy for SA leaching malachite was 33.23 kJ/mol. Furthermore, the effectiveness of SA as a new reagent for extracting copper from copper oxide ore was confirmed by experiment. This approach may provide a solution suitable for subsequent electrowinning. In addition, results reported herein may provide basic data that enable the leaching of other carbonate minerals of copper, zinc, cobalt and so on in an SA system.  相似文献   

14.
从西藏甲玛某多金属矿的酸性矿坑水中分离获得一株浸矿细菌(命名为XZ).该菌为革兰氏阴性菌,短杆状,菌体长约1~1.5μm,直径约0.5μm,两端钝圆,能够氧化Fe~(2+)和单质硫,最适生长pH为2.0,最适生长温度为30℃,经过对其生长特性进行研究及16S rRNA基因测序鉴定其为一株嗜酸氧化亚铁硫杆菌.利用XZ菌对西藏某低品位铜矿角岩矿进行了摇瓶浸出试验研究,结果表明,在接种量体积分数为10%,矿浆质量分数为10%,矿石粒度为-45μm占100%,培养温度30℃,振荡强度160 r/min的浸出条件下,经过15 d,Cu~(2+)的浸出率达72.15%.  相似文献   

15.
难处理金矿中伴生矿物对氰化浸出的影响   总被引:3,自引:0,他引:3  
对金矿石中常见的几种伴生矿物在氰化浸出中的影响进行了分析,同时采用化学试剂配制标准液的方式,考察了Fe2+,Cu2+,As3+对氰化物消耗的影响.试验结果表明:铁矿物中,磁黄铁矿对氰化浸出的影响较大,使溶金速率下降28.1%,氰化物耗量增加4倍,而黄铁矿与赤铁矿对氰化浸出的影响较小;铜矿物中,黄铜矿与辉铜矿对氰化浸出都具有很大影响,其中辉铜矿可使溶金速率下降36.81%,氰化物耗量增加10倍;砷矿物中,雄黄与雌黄对氰化浸出极其有害,使溶金速率分别下降41.95%和49.90%,氰化物耗量分别增加13.8倍和15.0倍,相反毒砂在氰化体系中比较稳定,对氰化浸出的影响较小.离子耗氰试验中,Fe2+...  相似文献   

16.
微生物浸矿是提取低品位,难选次生硫化铜矿中有价元素的最有效方法之一.本研究利用嗜酸氧化亚铁硫杆菌(Acidthiobacillus ferrooxidans)浸取福建某难选次生硫化铜矿,依次开展浸矿菌富集培养实验、驯化转代实验和不同粒径配比下柱浸试验,获得了不同阶段的细菌浓度、pH值、铜浸出率等演变规律;并结合电子计算机断层扫描技术实现了柱内矿堆塌落、截面孔隙演化和浸矿机理研究.研究表明:细菌浓度和pH值均呈现缓慢增加后趋降低的趋势,浸柱中细菌增殖较慢,浸矿480 h后,细菌浓度仅为每毫升5×107个.浸矿过程中,细颗粒趋于向柱底迁移,矿堆出现塌落;柱顶孔隙率变大,增幅为6.65%,柱底孔隙率变小,降幅为8.29%;塌落程度与细粒含量成正比,最小塌落为1.7 mm,最大塌落为6.15 mm.入堆矿石粒径极大影响着柱浸体系的浸出效果.实验中柱浸B组(粒径r<1 mm占28.41%)浸矿效果最佳,浸矿480 h后铜浸出率达47.23%.  相似文献   

17.
低品位高含泥氧化铜矿的制粒堆浸新工艺研究   总被引:5,自引:0,他引:5  
目前,堆浸技术处理低含泥量的低品位氧化铜矿已经取得了令人满意的效果,且实现了工业化生产;但对高含泥量的低品位氧化铜矿,由于其渗透性能差,堆浸工艺尚不成熟.本研究选取含泥量高的低品位氧化铜矿石。分别进行了搅拌浸出试验和制粒柱浸试验,研究了矿石的浸出行为、制粒条件等.试验结果表明:采用酸法制粒堆浸效果良好,浸出液峰值浓度较高,浸出率大于90%,酸耗较低,约为6%;矿石浸出后,颗粒保持完好,矿柱渗透性能良好;此类型的矿石采用酸法制粒浸出工艺在技术上可行.  相似文献   

18.
采用堆浸工艺对贵港新民矿区的氧化矿和混合矿进行选矿试验研究.贵港新民矿区混合矿和氧化矿中的铜、银采用堆浸回收工艺可以得到充分回收,铜的平均回收率为80.02%,银的平均回收率为74.70%,可回收的铜是664.65t×80.02%=531.85t,银是9.54t×74.70%=7.13t,已经达到铜、银回收的目的.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号