首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
地源热泵夏季运行地温场变化特性试验研究   总被引:1,自引:0,他引:1  
以同济大学某实验室地埋管地源热泵工程为例,通过对地埋管换热区地温场及地源热泵系统运行参数进行监测,分析研究了地源热泵系统夏季运行地温场的变化特性以及地温场变化对地源热泵系统运行效率的影响.结果表明:夏季累计运行44 d,土壤平均升温幅度为0.64℃;不同深度测点温度变化幅度随深度增加逐渐减小,120 m深度地温几乎无变化;换热区土壤地温恢复速率为0.14℃·100 d~(-1);随着换热区土壤温度的升高,地源侧进出水温差降低幅度为0.87℃,机组性能系数亦随之降低,系统换热效率下降.  相似文献   

2.
竖埋管地源热泵系统为室内环境控制提供冷热量。在空调工况下,热回收机组可以提供卫生热水。卫生热水的供应在冬夏不同的运行模式下,对地埋管的换热性能影响不同。通过某地源热泵工程设计,分析了冬夏季卫生热水系统在蓄热方式下对地源热泵系统地埋管换热性能的影响。利用卫生热水的蓄热能力,对地埋管换热器在不同工况下的动态换热性能进行了对比分析,并通过数值计算得到了不同运行模式下地埋管的换热性能参数。根据计算结果提出了在该工程负荷特性下的系统调节方式。  相似文献   

3.
对于采用地源热泵系统的以冷负荷为主的商业性建筑,因夏季冷负荷大于冬季热负荷,地下埋管年排热量大于年吸热量,若完全依靠地源热泵来供冷,则会造成埋管换热器换热能力下降和热泵机组的初投资比较高,热泵系统的循环效率也会降低。采用辅助冷却复合地源热泵系统,可有效降低系统投资,提高系统的运行节能效果。本文对复合地源热泵垂直理管换热器的换热能力进行研究以及周围土壤温度的变化进行分析。  相似文献   

4.
某地地埋管热响应试验研究与传热性能分析   总被引:1,自引:1,他引:0  
地埋管换热器传热性能及传热过程的研究一直是地源热泵工程应用的理论基础和重点。结合河南某地地源热泵工程,针对不同埋管方式的垂直U型地埋管建立现场热响应试验系统,分析得到场地土壤等效导热系数为1.52 W/(K?m);双U型地埋管换热器的换热效果比单U形管高30%左右,De32型双U地埋管的延米换热量比De25型高10%左右,地埋管延米换热量随载热流体流速的变化不呈正相关变化,存在最优流速使得换热器换热效果最好;以单位钻孔深度换热量最大作为优化条件提出优化U型地埋管换热器设计的方法,建议设计前试验确定适合管径和流体最优流速。  相似文献   

5.
针对地源热泵系统运行时出现的地埋管周围冷热量堆积的问题,提出了在地埋管管群两侧加抽水井和回灌井来产生人工流场,从而强化地埋管管群换热效果的方法.通过FEFLOW软件模拟了人工流场影响下地埋管的换热,对单个地埋管的换热进行了单因素敏感性分析,模拟了水井数量以及流场切换时间对地埋管管群换热效果的影响.结果表明:在选定工况下,加入人工流场后地埋管的换热量较无流场时均有较大提高,其中单个地埋管在流场定期切换与不切换情况下的换热量可较无流场时分别提高54.06%,和69.67%,;设置有1组水井、2组水井、3组水井的地埋管管群的平均换热量与无人工流场时相比分别提高了9.89%,、21.54%,和33.00%,;人工流场的切换时间越长,地埋管管群的换热效果越好,但随着切换时间的增长,平均换热量提高的幅度减小.  相似文献   

6.
为探讨地源热泵系统垂直埋管换热器运行对地表温度的影响,采用数值模拟的方法,基于一定的覆土厚度,结合不同工况下的埋管负荷,建立了地下土壤、钻孔、覆土与外界环境之间的传热模型,对埋管运行期覆土层温度场的变化进行了分析,并对地表温度随覆土厚度的变化规律进行了研究。结果表明,在地埋管的连续换热作用下,埋管周围土壤温度显著变化,且越接近钻孔中心,温度变化幅度越大;钻孔顶部覆土层温度局部变化,随着覆土厚度增加,温差递减;地表温度变化范围及上升幅度与埋管换热量成正比,与覆土厚度成反比;增加覆土层厚度能有效减缓地埋管换热对地表温度造成的热影响,有利于管群区域的红外伪装。  相似文献   

7.
根据地下连续墙内埋管换热器传热模型及埋管内流体温度场提出了地下连续墙内埋管换热器换热能力和出水温度的计算方法,并基于正交分析给出了上部建筑负荷最大时地下换热器的换热量及出水温度最高值的回归公式.在此基础上,根据出水温度最高值、单组埋管长度以及地下连续墙单幅宽度等限制条件提出了地下连续墙内埋管换热器的优化设计方法,并以上海自然博物馆地下连续墙内埋管为例进行了计算.分析表明,该优化设计方法计算简便,容易为工程设计人员所接受.  相似文献   

8.
利用TRNSYS瞬时仿真模拟软件建立地源热泵低温地板辐射供冷供热系统模型,对严寒地区办公建筑地源热泵低温地板辐射系统长期运行情况进行模拟,结合连续性实验,对软件模拟和实验得到的数据进行分析,并用实验得到的数据对数值模拟得到的结果进行验证.通过对不同机组选型、不同地埋管换热器钻孔个数、不同单位井深换热量工况下,系统长时间连续运行时机组平均COP以及土壤温度场进行模拟,发现机组容量越接近37.5 kW,COP越高,钻孔15~20个、单位井深换热量18~24 W时可以达到最佳运行效率.  相似文献   

9.
地源热泵地埋管换热器换热量的测试   总被引:1,自引:0,他引:1  
分析了在设计阶段和实际运行阶段地源热泵地埋管换热器换热量的测试原理、换热量计算方法,测试注意事项、系统误差控制方法,并且对实际工程运行阶段地源热泵地埋管换热器换热量进行测量、数据分析。最后,通过试验表明,地埋管挟热器换热量的测试方法是正确可行的。  相似文献   

10.
桩埋管与井埋管实验与数值模拟   总被引:1,自引:0,他引:1  
建立了一套组合型地下埋管换热器地源热泵实验系统,针对该系统所采用的不同回填材料U型垂直埋管即沙石回填的U型井埋管和混凝土回填的U型桩埋管换热器,分别进行在不同进口温度和流量下的取热和排热实验,分析这两种埋管换热器的换热效果和性能.理论上,采用所建立的内热源埋地换热器理论模型和专业软件,对这两种埋管方式的周围土壤温度场进行数值模拟.经检验,理论计算与实验结果吻合较好.相同实验工况下,得到了U型桩埋管的换热效果和换热稳定性要优于U型井埋管.排热时,U型桩埋管比U型井埋管的单位井深换热量提高62.5%,取热时,提高约16%.  相似文献   

11.
地源热泵的套管式地下换热器传热研究   总被引:4,自引:0,他引:4  
依据能量平衡,建立了地下浅埋套管式换热器传热模型,求解并分析了影响传热的主要因素,提出了强化换热的措施,给出了相应的函数关系图。  相似文献   

12.
土壤源热泵技术分析   总被引:1,自引:0,他引:1  
阐述土壤源热泵制冷(供热)的基本原理.介绍埋地换热器常见的形式,探讨土壤源热泵的特点和目前面临的主要技术问题.简要分析其在国内的研究、应用现状及发展前景。  相似文献   

13.
针对传统传热模型无法反映地下水对地埋管换热器换热的影响,结合黄土高原地区的地质条件,通过Fluent流体仿真软件建立地埋管换热器的三维非稳态分层渗流传热模型,并利用实验数据验证该模型的准确性.在不同的地下水流速和岩土体孔隙率的条件下,通过数值模拟的方法,研究以含水层厚度为特征长度的贝克莱数与地埋管换热器换热之间的关系.结果表明:单位井深换热量增加率与贝克莱数成对数关系;当贝克莱数较大时,地下水对地埋管换热器换热有促进作用;当贝克莱数较小时,地下水对地埋管换热的强化作用不明显,甚至起到抑制作用.同时,对含水层处的导热系数进行修正,得到新的分层渗流传热模型.  相似文献   

14.
 以线热源理论为基础建立套管式地埋管换热器换热的简化模型,给出基于热响应试验的套管式换热器设计计算方法。以湖南省韶山市一实际工程为实例对钻孔现场进行测试,采用该方法可计算出其综合导热系数和钻孔内总热阻。同时对该工程的另一钻孔进行双U测试及计算,以此作对比分析。考察两组测试在综合导热系数、钻孔内总热阻、换热温差和换热量上的内在联系。计算结果和测试结果表明,该计算方法在套管式换热器设计上具有适用性,避开了钻孔内层层热阻的复杂计算,简化了计算过程,可为实际工程提供计算参考。  相似文献   

15.
地埋管地源热泵系统源侧(火用)分析   总被引:1,自引:0,他引:1  
摘要:建立了地埋管地源热泵系统的源侧热力学(火用)分析模型,模型中考虑了持续热扰动和环境温度变化对产出(火用)的影响,并对不同气候区域和不同埋深地埋管换热系统进行了(火用)分析.结果表明,长期运行时,环境温度的变化对欠用增量有显著影响,合理控制热泵的运行时间可以使系统获得较高的(火用)增量;埋深的减小使泵耗功明显增加,甚至会高于系统从热源得到的(火用)增量,而埋深超过100m时,深度的增加对提高火用增量来说并不经济.提出了地埋管换热器(火用)效比这一参数,对评价地埋管换热器获取(火用)增量的效率、经济性,以及确定地埋管地源热泵系统合理的运行时间有理论指导意义.  相似文献   

16.
地源热泵利用土壤中的热源,向建筑物内部提供热量或者冷量.地源热泵在不同地区的应用有所区别.结合兰州市马兰黄土的特性和气候环境,分析地源热泵与土壤间热量传递的规律,总结马兰黄土中含水量对热量传递的影响,以及土壤特性对人工增湿过程中的主要影响因素.针对西北地区分布范围较广的马兰黄土特点,提出在土层深度为5 m以下的换热区域,施加人工增湿;为避免黄土湿陷,需要保证黄土含水率在6%-15%之间.  相似文献   

17.
介绍了地源热泵技术在黄骅港站综合办公楼工程中的应用情况,阐述了系统的工作原理、施工工艺流程,探讨了地源热泵技术的应用价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号